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ABSTRACT 

Dispersal is a fundamental process that affects local and regional dynamics, including 

population persistence, range expansion, and interspecific interactions, particularly as 

disturbance through habitat fragmentation and climate change.  Here, my main objective was to 

ascertain how fragmentation affects dispersal and the interactions of competitors within the local 

patch and regional landscape. In my second chapter, I assessed dispersal through a literature 

review and population persistence model to examine the breadth and frequency of different 

density-emigration forms that occur in nature, including forms that are not prevalent in the 

literature. I conclude that these rare forms have important population dynamic consequences and 

that studies of density dependence should include methods that are better able to test for these 

forms. In my third chapter, I quantified individual and group movement of Ischnodemus conicus 

(Van Duzee), and, by using methods proposed in my first chapter, I was able to detect the rare 

non-linear, u-shaped density-dependent emigration. This form was likely promoted by the edge-

avoiding, clustering behavior observed within individual movement experiments. Empirical 

assays such as this are lacking and can be used in predictive models for population dynamics. In 

my fourth chapter, I took a novel approach to studying the dispersal-competition-fecundity 

tradeoff that is predominately studied by changing just one of these traits. I applied concurrent 

selection pressures of dispersal and competition onto populations to represent the interacting 

tradeoffs that occur in the evolving range core and range front of an expanding population using 

Tribolium castaneum (Herbst) and T. confusum (DuVal)) populations. I additionally assessed the 

traditional single trait selection tradeoffs between competitive and dispersal ability and fecundity 

by selecting for all traits and assessing responses to each one. Overall, my research evaluates 

dispersal at multiple scales, from individuals within a patch to communities in a landscape and 
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examines previous research while suggesting improvement for the future. This work is an 

important contribution to landscape and dispersal ecology and can be applied to studies of 

invasion and conservation biology. 
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CHAPTER 1.  

INTRODUCTION 
 

Across the globe, anthropogenic fragmentation of habitats has increased (Saunders et al., 

1991) and population persistence is often threatened (Anholt 1995; Debinski and Holt, 2000; 

Hanski 1999) as a consequence of disturbance-mediated changes of within-patch movement 

(Haynes & Cronin, 2006), matrix-boundary behavior (Ricketts 2001), emigration (Hanski 1999, 

Poethke and Hovestadt 2002), and gene flow (Cossu et al. 2017). In these variable systems, 

dispersal connects populations, promoting spatial synchrony that allows populations to persist 

(Anholt 1995; Hanski 1999; Hanski and Gilpin 1997) and expand their range (McPeet and Holt 

1992, Neubert and Caswell 2000).  

The movement of individuals within a habitat determines the likelihood of encountering 

the edge of the patch-matrix and may be influenced by the abundance of resources (Franke and 

Yakubu, 2008; McClintic et al., 2014), presence of conspecifics (Bartelt et al. 2008; Stevenson et 

al., 2017), and interspecific competition (Senger et al. 2007; Svenning et al. 2014). In fragmented 

landscapes, individuals have a greater chance of encountering the edge in smaller patches, which 

provides more opportunities for emigration to occur (Haddad 1999). However, the more hostile 

matrix may create edge effects that promote individuals either aggregating at (e.g., Campbell and 

Hagstrum 2002; Desrochers et al. 2003; Nowicki et al. 2014) or avoiding (e.g., Cronin 2009; 

Gates and Gysel 1978; Jacob and Brown 2000) the edge instead of emigrating. Consequently, the 

movement decisions of individuals within a patch can affect the overall metapopulation 

persistence of the species, but this is primarily theoretical. Empirical research has not kept up 

with theory, and an individual’s response to fragmentation is often one of the least understood 
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life history traits concerning the biology of a species (Evans et al., 2018; Hooten et al., 2017; 

Patterson et al., 2017).  

The probability of an individual to emigrate from a patch may also be dependent upon the 

density of the population. Common density-emigration relationships including positive (+DDE; 

Bowler and Benton 2005; Hovestadt and Poethke 2006), negative (-DDE; Matthysen 2013; 

Serrano et al. 2005), or density-independent (DIE; Levins 1969; Hanski and Gilpin 1991).  

Theoretical studies have compared DIE, +DDE, and -DDE, and showed +DDE populations have 

a greater chance of establishing a new population as individuals are less likely to leave in low 

densities (Sæther et al. 1999) but range expansion is theoretically faster with -DDE populations 

as individuals emigrate more readily from unfavorable habitats that likely contain few 

conspecifics (Altwegg et al. 2013). DIE populations, on the other hand, emigrate at the same rate 

despite density, which accelerates population expansion compared to +DDE and allows for more 

individuals to remain in newly colonized patches compared to -DDE (Altwegg et al. 2013). 

However, a population’s response to density is not necessarily constrained to these three forms 

and nonlinear forms such as u-shaped (uDDE) or hump-shaped (hDDE), can theoretically occur 

(Amarasekare 2004) but little is known about their dynamics nor prevalence in nature.  

If the emigrating individuals reach the range front, they are theoretically exposed to 

different biotic selection pressures (Travis and Dytham 2002; Hughes et al 2007). As few 

individuals colonize new patches and intraspecific competition is low, populations likely have 

high growth rates and evolution of selected traits may quickly occur (Masson et al. 2018; Philips 

et al. 2008; Shine et al. 2011). Through spatial sorting, the best dispersers accumulate at the 

range front (compared to less-mobile individuals in the core) and, if dispersal traits are heritable, 

dispersal propensity may increase each generation and accelerate range expansion (Monty and 
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Mahy 2010; Phillips 2015). Additionally, founder effects, created by the lack of genetic 

variability of populations colonized by few individuals, increase kin-competition and thus 

dispersal rates as individuals emigrate to alleviate competitive pressures on relatives (Van 

Petegem et al. 2018). However, the propensity to disperse and competitive ability are both 

energetically costly and often trade-off in populations (Fronhofer and Altermatt 2015). This 

range expansion process assumes that competition decreases as an individual moves away from 

the core, that only one trait (either dispersal or competitive ability or fecundity; DCF) is 

evolutionarily selected and changes in the other traits are in response, and that the landscape does 

not include intra-specific competition. However, each of these assumptions do not fully represent 

range dynamics in a landscape and empirical research is needed as models can easily under- or 

over-predict range expansion speeds of invasive species and species escaping disturbed 

environments (Svenning et al. 2014). 

My main objective was to ascertain how fragmentation affects dispersal and the 

interactions of competitors within the local patch and regional landscape by addressing the 

research gaps mentioned above. I accomplished this in a dynamic dissertation that researches 

dispersal at several scales, from individuals and populations within a patch to evolving 

communities in a landscape.  

In my second chapter, I analyzed dispersal through a systematic literature review of the 

five different density-emigration forms to examine the breadth and frequency of DDE forms that 

occur in nature. I created biologically plausible explanations for each form and predicted that 

while there is a biological purpose to study the population-dynamic consequences of the -DDE, 

uDDE, and hDDE forms, they are not as prevalent in the literature as DIE and +DDE. Lastly, I 

helped develop a simple and flexible modeling framework based on reaction-diffusion to assess 
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how the different forms of DDE affect population dynamics for a one-dimensional, single-patch 

system with a matrix that has 1 of 3 hostility levels. I hypothesized that the different forms of 

DDE would influence the population response to fragmentation, including changes in minimum 

patch size and population persistence. 

This review gave the foundation for my third chapter, which addresses the lack of data 

concerning individual movement, and connects this to the probability of an individual to 

emigrate from a patch. I used the blissid bug Ischnodemus conicus (Van Duzee) (Hemiptera: 

Blissidae) as my research organism. Little empirical research has studied I. conicus or its 

congeners, and nothing is known concerning its dispersal behavior. This bug is a major herbivore 

on Spartina alterniflora (Loisel) (Poacea), which is commonly planted to serve as an erosion 

control along the Gulf coast, so not only is understanding the species’ movement interesting as 

an entomological system, but as the insect lives in a standard patch surrounded by a simple, yet 

harsh matrix, its movement can easily be generalized to other systems.  

Using this system, I assessed dispersal by quantifying (1) the potential for long-distance 

dispersal  as the proportion of macropterous (long-winged) individuals, (2) the density-

emigration relationship of populations in a small, fragmented patch, and (3) the movement 

behaviors of individuals within a Spartina patch, hostile sand matrix, and at the edge between. I 

hypothesized that macropters would be present in the landscape. But they would be rare and 

long-distance dispersal events would be unlikely to occur. I also predicted that the DDE form 

would be negative as the species aggregates and is less likely to emigrate from high densities. 

Lastly, I hypothesized tortuous, short movement of individuals in the habitat and edge 

landscapes that would result in clumped distribution and reflect its predicted -DDE form, 

whereas movement within the sand matrix would have little tortuosity and larger step size that 
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would allow the insect to cross the hostile matrix quickly. These assays on movement can be 

used as the first step toward developing predictive models for population dynamics. 

In my fourth chapter, I addressed the research gaps pertaining to range expansion by 

taking the novel approach of applying concurrent selection pressures of dispersal and 

competition onto populations to represent the interacting tradeoffs that occur in the evolving 

range core and range front of an expanding population. I compared these population responses to 

the customarily used single-trait selection tradeoffs between competitive and dispersal ability 

with the hypothesis that the additive selection pressures would reduce the extent to which each 

DCF (dispersal, competition, and fecundity) trait is selected (as modelled by Burton et al. 2010).  

I additionally incorporated fecundity selection, which is often measured only as a 

reaction to other trait selection and predicted that an increase in fitness would promote dispersal. 

I then modelled this with the competition-colonization tradeoff. As the response to tradeoffs is 

often species-specific, if not population dependent, I used two species, Tribolium castaneum and 

Tribolium confusum, that have high niche overlap but vary in their normal responses to 

competition to test the differences between species. I predicted that the weaker competitor would 

show a greater decrease in DCF traits with competition selection pressures. Additionally, I 

assessed how applying different selection pressures changes an individual’s reaction to a 

competing species with the hypothesis that high competition would promote interspecific 

coexistence in comparison to the other selection lines representing the core or the front of a 

range. Results from this experiment can be applied to dispersal events related to the invasion of 

exotic species and population range expansion in response to habitat disturbance.  

Lastly, in the fifth chapter of this dissertation, I summarize the overall biological 

implication of my research to advance our understanding of population dynamics, species 
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invasions, and conservation biology. I conclude by briefly describing the research I plan to do in 

the future.   
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CHAPTER 2. 

FREQUENCY OF OCCURENCE AND POPULATION-DYNAMIC 

CONSEQUENCES OF DIFFERENT FORMS OF DENSITY-DEPENDENT 

EMIGRATION1 

 

INTRODUCTION 

Emigration of organisms is a key process affecting colonization (Amarasekare 1998; 

Clobert et al. 2009), minimum patch size (Poethke and Hovestadt 2002), local densities, 

population stability (Hanski 1999), and species coexistence (Cadotte et al. 2006; Levins and 

Culver 1971). From a regional or metapopulation perspective, the magnitude of dispersal affects 

spatial synchrony and is fundamental to population persistence (Anholt 1995; Hanski 1999; 

Hanski and Gilpin 1997; Ims and Yaccoz 1997) and range expansion (Altwegg et al. 2013). As 

in the classic work of Levins (1969), early metapopulation models assumed density-independent 

emigration (DIE; e.g., Hanski and Gilpin 1991; Levins 1974; Pacala and Roughgarden 1982; 

Shmida and Ellner 1984). However, the more widely accepted view of emigration behavior is 

that species should exhibit a positive relationship between conspecific density and emigration 

(+DDE; Amarasekare 2004; Bowler and Benton 2005; Matthysen 2012), and many subsequent 

models incorporated this form of emigration (e.g., Hovestadt and Poethke 2006; Pulliam 1988; 

Sæther et al. 1999).  Alternative forms of density-dependent emigration (DDE), including 

negative density-dependent emigration (-DDE) or nonlinear forms such as u-shaped density- 

dependent emigration (uDDE) or hump-shaped density-dependent emigration (hDDE), are 

 
1 A version of this chapter previously appeared as Harman, R. R., J. Goddard, R. Shivaji, and J. T. Cronin. 

2020. Frequency of occurrence and population-dynamic consequences of different forms of density-

dependent emigration, American Naturalist. The definitive version is available at 

https://www.journals.uchicago.edu/doi/10.1086/708156. 

 

https://www.journals.uchicago.edu/doi/10.1086/708156
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theoretically plausible (see Fig. 2.1) but have received almost no attention in the literature (but 

see Amarasekare 2004).  

 

 
Figure 2.1: Hypothetical forms of the density-emigration relationship, including density 

independent emigration (DIE), positive density-dependent emigration (+DDE), negative density-

dependent emigration (-DDE), u-shaped density dependent emigration (uDDE), and hump-

shaped density dependent emigration (hDDE).  

 

Although DIE and +DDE are widely reported in the literature, there has not been a 

systematic review that examines the breadth and frequency of DDE forms that occur in nature. 

Moreover, we know very little about the population-dynamic consequences of -DDE (but see 

Amarasekare 2004; Matthysen 2005; Rodrigues and Johnstone 2014; Sæther et al. 1999), uDDE, 

and hDDE forms. Our study has three objectives. First, we describe each form of DDE in Fig. 

2.1, provide biologically plausible explanations for its occurrence, and, where possible, report 

what is known about its population-dynamic consequences. Second, we conducted an extensive 

review of the published literature that examined the relationship between conspecific density and 

emigration from a patch and assessed the range and frequency of different forms of DDE. Lastly, 

we develop a simple and flexible modeling framework based on reaction-diffusion to assess how 
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the different forms of DDE affect population dynamics for a one-dimensional, single-patch 

system with a matrix that has one of three hostility levels. Our intention with this model is to 

illustrate how each form of DDE can potentially influence the minimum patch size for 

population persistence, generate Allee effects, and affect population stability. 

 

OBJECTIVE 1: FORMS OF DENSITY-DEPENDENT EMIGRATION 

The evolution of +DDE (Fig. 2.1) has been attributed to the population benefits of 

avoiding inbreeding and intraspecific competition (Hamilton and May 1977; Handley and Perrin 

2007; Travis et al. 1999). As such, non-gregarious species are expected to exhibit +DDE (Bowler 

and Benton 2005) as they receive little benefit from group living. Mathematical models predict 

that +DDE decreases the extinction probability in spatiotemporally variable environments 

(Amarasekare 2004). Theoretically, in non-stable environments, current patch quality does not 

determine future offspring value as resources are likely to change, leading to resource 

competition at high densities and promoting the evolution of +DDE strategies (Rodrigues and 

Johnstone 2014). Positive DDE may increase mean per-capita fitness (Hovestadt et al. 2010), 

partially because the form promotes population growth in small populations as dispersal 

probability is low (Amarasekare 2004).  

In contrast, -DDE results in fewer individuals leaving at high densities (Fig. 2.1), 

suggesting some benefit for species living in a group (Bowler and Benton 2005; Kim et al. 2009; 

Matthysen 2012; Serrano et al. 2005).  Gregarious behavior in a population can underlie an Allee 

effect (Allee et al. 1949; Cantrell and Cosner 2007; Donahue 2006) and is often a consequence 

of the benefits of group living outweighing the costs of increased intraspecific competition, such 

as instances where conspecific attraction increases the chance of finding a mate (see review by 
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Gascoigne et al. 2009), extra-pair mating opportunities (Serrano et al. 2005), defense against 

predators (Hammill et al. 2015), or foraging success (Kim et al. 2009). Under -DDE, the species 

is not expected to be resource limited at high density, but if it is, uDDE should arise (see below). 

With –DDE, population stability at the patch level has been shown to increase with an increase 

in growth rate (Sæther et al. 1999). Lastly, -DDE is likely to evolve in stable environments with 

constant habitat quality as individuals residing in high quality patches will constantly produce 

offspring with high fitness that are unlikely to leave at high densities (Rodrigues and Johnstone 

2014). 

Positive and negative DDE have distinct population-dynamic consequences at the 

metapopulation or regional scale. Positive DDE species have a greater chance of establishing a 

new population as they are less likely to leave a previously unoccupied patch while their 

densities are low (Sæther et al. 1999). Therefore, +DDE species are expected to have a larger 

range than -DDE species, but range expansion may be faster in -DDE than +DDE species as the 

former species emigrate more readily from unfavorable habitats that predominately contain low 

population densities (Altwegg et al. 2013). Range speed may also increase as -DDE is more 

likely to evolve low dispersal costs and consequently higher dispersal rates (Rodrigues and 

Johnstone 2014). Conversely, the +DDE relationship will be the strongest when the cost of 

dispersal is greatest (Travis et al. 1999). Over the entire metapopulation, -DDE species should 

have a higher probability of local population extinctions as individuals are more likely to leave 

the patch when densities are low; however, in the small range of occupied patches, extinction 

risk will be reduced (Sæther et al. 1999). 

Very little attention has been given to nonlinear forms of density-dependent emigration, 

despite early recognition of its potential importance (e.g., Johst and Brandl 1997; Travis et al. 
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1999). For the u-shaped relationship (uDDE), the initial negative slope and high emigration rate 

at low density can be caused by the same factors that promote an Allee effect (Allee et al. 1949; 

Altwegg et al. 2013; Kim et al. 2009; Matthysen 2012). However, at high densities, the negative 

effects of conspecific density, such as competition, encourage emigration. This combination of 

unfavorable effects of density has been noted in blue footed boobies (Kim et al. 2009) and strains 

of ciliated protozoa Tetrahymena thermophila that are highly aggregative (Jacob et al. 2016).  

Lastly, hump-shaped DDE (hDDE) has not been considered in any theoretical treatise. 

Biologically, this form could exist when the benefits of living in small and large groups are 

greater than intermediate-sized groups. For example, small groups may be less noticeable to 

predators while larger groups may be more defensible, thus intermediate-sized populations are 

less advantageous. With some genetic strains of ciliates, Jacob et al. (2016) found +DDE at low-

to-intermediate density levels but in larger populations, emigration was reduced, potentially 

owing to bottlenecks in the movement through narrow corridors. 

 

OBJECTIVE 2: PRESENCE OF DDE FORMS IN THE LITERATURE 

Methods 

We compiled a database of emigration studies that were found in the Web of Science 

(www.webofknowledge.com). The search included all records in the database up to January 2, 

2019. We used the search terms “density-dependent dispersal”, “density-dependent emigration”, 

“density independent emigration”, “density independent dispersal”, and “dispersal” plus 

“density”. Review papers and relevant references from the collected articles were also searched. 

Articles were retained from the database if they (1) included data on emigration, (2) were 

empirically based (either experimental or observational), (3) used two or more conspecific 
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density levels, and (4) had a study organism that engaged in active dispersal. We retained studies 

with only two density levels but we acknowledge that those cases necessarily preclude the 

detection of nonlinear DDE (e.g., uDDE and hDDE). Although passive dispersal (e.g., transport 

by wind or water currents) can be density dependent (e.g., Kellner and Hubbell 2018; Sugiyama 

et al. 2018), we focused our study on species whose individuals make their own decision when to 

leave based on local density, patch size, boundary conditions, matrix composition, etc. 

Our Web of Science search yielded 115 articles on the relationship between conspecific 

density and emigration. Several of these articles included data for more than one species or 

multiple tests for the same species (e.g., for different age classes or stages, different sexes, or in 

response to different environmental contexts). For articles that subjected species to different 

treatments and reported more than one form of DDE, we treated each type of DDE for that 

species as an independent replicate in our analysis. We did this because we were most interested 

in the range of DDE forms and averaging within a species could be misleading. Based on these 

criteria, we had 145 studies of DDE (Appendix A). 

Among the case studies, emigration was quantified in a number of ways: as the 

proportion leaving the patch (76% of studies), dispersal distance (18%), genetic relatedness 

(3%), or proportion of alates or macropters (3%). The proportion emigrating from a patch is a 

direct measurement of the emigration rate, and although it is the metric most often used, these 

other measurements are often regarded as good proxies for emigration. Dispersal distance is 

often used with species that emigrate from the natal habitat (e.g., from a nest; Molina-Morales et 

al. 2012). The genetics of a population measures DDE by calculating the relatedness of the 

individuals among patches (e.g., Van Hooft et al. 2008) or the distance separating full siblings 

(e.g., Derosier et al. 2007).  Lastly, in some insects, the proportion of long-winged individuals 
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(macropters) in a population can be used as an index of dispersal capability (Denno et al. 2001). 

The production of macropters has been positively correlated with conspecific density in a 

number of insect species (e.g., Poniatowski and Fartmann 2011; Strong and Stiling 1983).  

For each study, the relationship between emigration and density was assigned to one of 

five DDE forms: DIE, +DDE, -DDE, uDDE, or hDDE. Assignment was based on the author’s 

demonstration of a statistical relationship between density and emigration (e.g., regression, 

ANOVA, general linear mixed model). Unless the authors had already done so, if there were >3 

density levels, we reanalyzed the data to test for nonlinearities in the density-emigration 

relationship. In all such cases (n=40), we extracted the data from the original figures and 

analyzed the relationship between density and emigration using a nested set of predictor 

variables (constant only, constant + density, constant + density + density2). Akaike information 

criteria corrected for small sample size (AICc) was used to choose the best model to explain 

variation in emigration; and therefore, determine the most likely form of DDE. The model with 

the smallest AICc value was deemed best, but all competing models with an AICc value within 2 

of the best model were considered to have substantial support (Burnham et al. 2011). The 

analyses were performed using the statistical package mcmcplots in RStudio (RStudio Team 

(2016). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA). Seven of the cases 

were reclassified as either uDDE or hDDE based on this model-selection procedure. Appendices 

A and B identify which cases we found a different form of DDE than reported by the authors.   

Quadratic regression is not a rigorous method for determining if a relationship is truly u- 

or humped-shaped as opposed to being monotonically concave or convex (Simonsohn 2018). For 

the above seven reclassified cases and four of the six cases originally classified as hDDE and 

uDDE (we could not obtain the raw data for two cases), we used the Robin Hood algorithm 
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proposed by Simonsohn (2018) that estimates two regression lines and tests whether there is a 

significant sign change between the slopes.  

Similar to the review by Sibly et al. (2005) that explored the relationship between density 

and the per-capita population growth rate, we also examined whether the form of DDE varied 

with taxonomic group. Species were grouped according to broad taxonomic classes (insect, 

mammal, bird, fish, reptile, other invertebrate, and microorganism). Because of low sample size, 

reptiles (n=4 cases) were not included in subsequent taxonomic statistical analyses. We also 

assessed whether the frequency of each form of DDE differed between observational or 

experimental studies and whether the number of density levels or the range of densities 

influenced the detection of any particular form of DDE. For the density range, we took the ratio 

of the highest and lowest densities in the study. Finally, because of low sample sizes, all 

nonlinear forms of DDE, including uDDE and hDDE, were combined into the category 

“nonlinear” for methodological comparisons (number of densities, study method, and density 

ratio).  

To evaluate whether the proportion of each DDE form varied significantly with 

taxonomic group or study methods (observational/experimental), we used separate Pearson’s chi-

square tests for independence with Monte Carlo simulations of 10,000 iterations. Differences 

among DDE forms in the number of density levels and density ratio were assessed with 

generalized linear models. To account for the right-skewed data and excess of low values, the 

error distribution was defined as negative binomial. Chi-square statistical analyses were 

performed with RStudio. The generalized linear models were analyzed using SAS (Version 9.4, 

SAS Institute Inc., Cary, NC) Proc GLIMMIX and all other analyses were performed with JMP 

(JMP®, Version 14. SAS Institute Inc., Cary, NC). Figures were created using JMP.  
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Results 

Overall, the 145 case studies of DDE spanned a wide range of taxa including insects 

(43%), mammals (15%), birds (16%), fish (8%), invertebrates (10%), micro-organisms (6%), 

and reptiles (2%). As predicted, the majority of cases exhibited +DDE (36%) or DIE (30%) 

forms. Interestingly, -DDE was reported in 25% of the cases. Finally, 6% and 3% of the cases 

were classified as uDDE and hDDE, respectively. These nonlinear forms of DDE have been 

reported only since 2009; however, four cases of uDDE and hDDE pre-dating 2009 were 

reclassified by us (see Appendix A). Following more rigorous testing using the Robin Hood 

method of Simonsohn (2018), we could confirm only one case of uDDE (Maag et al. 2018) and 

two cases of hDDE (Jacob et al. 2016; Chatelain and Mathieu 2017; Supplementary Material 

provided to American Naturalist for publication, Table S2). 

We found no evidence that the frequencies of different forms of DDE varied among 

taxonomic group (χ220 = 19.81, p = 0.47; Fig. 2.2). However, the frequencies of each form of 

DDE did depend on whether the study was observational or experimental (38% and 62% of all 

studies, respectively). Cases reporting DIE and +DDE were significantly more likely to be 

experimental than observational: 72% of the cases of DIE and 69% of the cases of +DDE 

occurred in experimental studies (χ21 = 19.36, p < 0.0001 and χ21 = 14.44, p = 0.0001 

respectively). Conversely, in 58% of -DDE cases were observational studies (χ21 = 4.0, p = 

0.046). Finally, the thirteen nonlinear cases had methods equally shared between observational 

(43%) and experimental (57%) methods (χ21 = 0.98, p = 0.32).  
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Figure 2.2. Mosaic representing the percent of each density-emigration form within taxonomic 

group. Numbers represent the number of cases within each category. The width of each column 

represents the proportion of each taxon among all cases. The density-emigration forms include 

density-independent (DIE), positive (+DDE), negative (-DDE), and nonlinear forms (u-shaped, 

h-shaped and all forms with a significant quadratic term in the model combined). 

 

Among the 145 case studies in our review, the number of densities or density levels was 

often quite low. Twenty-two percent of the cases had only two densities and an additional 21% 

had three. Not surprisingly, observational studies averaged more than twice as many densities as 

the experimental studies (14.4 ± 3.1 [median = 7] versus 5.9 ± 0.7 [median = 3.5] F1,129 = 29.2, p 

< 0.001; Fig. 2.3). Additionally, the range of densities, measured as the ratio of the highest-to-

lowest density, was 1.2 times greater for observational (21.4 ± 6.0 [median=6.3] compared to 

experimental studies (17.6 ± 4.0 [median = 6]; F1,121 = 29.9, p < 0.001; Fig. 2.3). The number of 

densities was significantly different among DDE forms (F3,127 = 5.66, p = 0.001; Fig. 2.3) with 

cases of DIE (5.2 ± 0.6 [median = 5]) utilizing a third of the densities of cases of nonlinear DDE 

(14.3 ± 6.8 [median = 4]) and half the densities of cases of +DDE (8.3 ± 1.4 [median = 4]) and -
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DDE (11.0 ± 3.1 [median = 5]). The number of densities was also significantly higher for 

nonlinear DDE cases than +DDE cases (p = 0.05). DIE cases also utilized a narrower range of 

densities than the other DDE forms (F3,119 = 5.77, p = 0.001; Fig. 2.3). Studies with DIE had a 

high:low density ratio of 9.1±2.6 (median = 4.0). Studies with +DDE, -DDE, and the nonlinear 

forms had a ratio of 25.7 ± 7.8 (median = 7.5), 17.3 ± 4.1 (median = 8.0) and 24.2 ± 8.0 (median 

= 16.0) respectively (Fig. 2.3).  

 

Figure 2.3. Box-and-whisker plots for the number of density levels and density range for 

experimental and observational methods as well as for the different forms of DDE (density 

independent [DIE], positive [+DDE], negative [-DDE] or all nonlinear forms combined). The 

box plot shows the median (horizontal bar) and the 25% and 75% quantiles (ends of the box). 

Whiskers are ±1.5(range between the 25% and 75% quantiles). Grey dots are the raw data. 
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OBJECTIVE 3: POPULATION DYNAMICS OF DDE 

Methods 

Although a wide range of DDE forms are evident in nature, little is known about the 

long-term population consequences for populations that exhibit each form.  To illustrate the key 

differences in population persistence and minimum patch size between the DDE forms, we 

mathematically analyzed a theoretical population model based on the reaction diffusion 

framework. Our flexible, one-patch model allows patch size, boundary condition, and matrix 

hostility to vary with a defined form of DDE (Fig. 2.4). This approach is not an exhaustive 

analysis of the local population-dynamic consequences of different forms of DDE; however, we 

demonstrate, with a broadly applicable model, that the form of DDE can have important 

consequences for within-patch population dynamics, such as population persistence in patches 

that meet a minimum patch size (Schultz and Crone 2005). 

 
Figure 2.4. Graphic representation of the primary variables incorporated into the one-patch 

model used to create the bifurcation-stability curves for each form of density-dependent 

emigration (DDE). 
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Edge permeability can be dependent on the matrix surrounding the patch (Reeve et al. 

2008) as matrix degradation increases mortality of dispersers (Maciel and Lutscher 2013); 

therefore, we utilize three matrix hostility levels to assess population persistence. First, we 

consider a one-dimensional patch Ω = (0, ℓ) surrounded by a hostile matrix where ℓ > 0 

represents the patch size. The model is based on a derivation given in Cronin et al. (2019) and 

the references therein. Here, 𝑢(𝑡, 𝑥) represents the density of a theoretical population (𝑢)  

inhabiting patch Ω with the variable 𝑡 representing time and 𝑥 representing spatial location.  The 

model is then: 

𝑢𝑡 = 𝐷𝑢𝑥𝑥 + 𝑟𝑢(1− 
𝑢

𝐾
); 𝑡 > 0,𝑥 ∈ Ω

𝐷𝛼𝑖(𝑢)
𝜕𝑢

𝜕𝜂
 + 

√𝑆0𝐷0

𝜅
[1 − 𝛼𝑖(𝑢)]𝑢 = 0; 𝑡 > 0,𝑥 ∈ 𝜕Ω

  (1) 

where the parameter 𝐷 is the diffusion rate inside the patch, 𝐷0 is the diffusion rate in the matrix 

surrounding the patch, 𝑆0 is the death rate in the matrix, 𝛼𝑖: [0, ∞) → [0,1] encodes the DDE 

relationship as a function of organism density that outputs the probability that an organism 

remains in the patch upon reaching the boundary (𝜕Ω) with 𝑖 = 1,2,3,4, or 5 depending on the 

density-emigration relationship, and 𝜅 is a parameter encapsulating assumptions (see Cronin et 

al. 2019) regarding the patch/matrix interface such as movement behavior. Also, 𝜕𝑢/𝜕𝜂 

represents the outward normal derivative of 𝑢 and the reaction term is standard logistic growth 

with intrinsic growth rate 𝑟 and carrying capacity 𝐾 of the population inside the patch, Ω. The 

parameters 𝐷, 𝐷0, 𝑆0, 𝑟, 𝐾and 𝜅 are always positive. The dynamics of (1) with constant 𝛼𝑖 and 

𝜅 = 1 are well known (see e.g., Cantrell and Cosner 2003). 

 Following a standard nondimensionalization, (1) becomes: 

𝑢𝑡 =
𝐷

𝑟ℓ2𝑢𝑥𝑥 + 𝑢(1− 𝑢); 𝑡 > 0,𝑥 ∈ Ω0

𝛼𝑖(𝑢)
𝜕𝑢

𝜕𝜂
 +ℓ𝛾[1 − 𝛼𝑖(𝑢)]𝑢 = 0; 𝑡 > 0,𝑥 ∈ 𝜕Ω0

  (2) 



20 
 

where the patch size ℓ is now present as a parameter inside the model, Ω0 = (0, 1), 𝑢(𝑡, 𝑥) now 

measures a percentage of the carrying capacity 𝐾; 𝑡 has been scaled by the intrinsic growth rate 

𝑟; and 𝛾 = √(𝑆0𝐷0)/(𝐷𝜅) describes the hostility of the matrix where 𝛾 ≈ 0 implies a low level 

of hostility and 𝛾 ≫ 1 implies a situation where an organism faces almost immediate mortality 

upon entering the matrix. Lastly, through the nondimensionalization process, 𝜅, only has an 

impact on the interpretation of the matrix hostility, γ, and does not qualitatively change the 

bifurcation-stability curves resulting from the model. Using these important parameters found in 

(2), we can illustrate the potential dynamical differences between the DDE forms in a clear, 

generalizable reaction-diffusion model.  

To assess the effects of different DDE forms on the persistence of a population with 

dynamics that are governed by (1), five 𝛼𝑖(𝑢) functions were selected with 𝛼1(𝑢), 𝛼2(𝑢), 𝛼3(𝑢), 

𝛼4(𝑢), and  𝛼5(𝑢) representing DIE, +DDE, -DDE, uDDE, and hDDE respectively (see 

supplementary material for details). Each 𝛼𝑖(0)-value is designed so that any corresponding 

differences in the results are due only to the density-emigration relationship. We then employed 

an adaptation of the time-map analysis method given in Foneska et al. (2019) to study the 

structure of positive steady-state solutions of (2); i.e., the conditions under which population 

persistence is possible. An algorithm was written in Mathematica (version 11.2, Wolfram 

Research Inc.) to generate bifurcation curves based on this method which depicts the structure of 

positive steady states (i.e., population persistence) of (2) as the main parameters patch size, ℓ, 

and matrix hostility, 𝛾, are varied. The time-map analysis method and resulting bifurcation 

curves provide a complete picture of the number and types of positive steady states for (2).  

 To augment these bifurcation curves, we performed a linearized stability analysis of the 

trivial steady state of population extinction, 𝑢(𝑥) ≡ 0, and determined the stability properties of 
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this state, including the location of the state’s change from stable to unstable, based upon the 

parameters in the model. Further, we employed the time-map analysis method and Mathematica 

(version 11.2, Wolfram Research Inc.) to computationally determine the actual profile of each 

steady state. A linearized stability analysis was then used on these steady-state profiles to 

numerically estimate the stability properties of each steady state. The final product of this 

analysis is a bifurcation-stability curve of the patch size ℓ versus the maximum value of the 

steady-state profiles with an indication of whether or not each steady state is stable, or unstable 

for each fixed 𝛾 (matrix hostility). Note that all stable steady states are asymptotically stable.  

 

Results 

We fixed values for the intrinsic growth rate, 𝑟, and patch diffusion rate, 𝐷, and produced 

bifurcation-stability curves for three scenarios: 1) low matrix hostility 𝛾 ≈ 0, 2) intermediate 

matrix hostility, and 3) high matrix hostility 𝛾 ≫ 1. The scenarios of low matrix hostility (see 

supplementary material) and intermediate (Fig. 2.5) hostility yielded qualitatively similar model 

predictions. 

In all cases of matrix hostility, there is a minimum patch size, denoted as ℓ∗, for each of 

the forms of DDE. For any patch with size larger than ℓ∗ the model predicts that any nonnegative 

initial density profile will tend to a positive steady state as time, 𝑡 → ∞ and lead to unconditional 

persistence. Depending on the form of DDE and patch size, the steady state may be precariously 

close to zero and the local population may be prone to extinction given a large enough stochastic 

event that negatively affects the population. For patches whose size is below the minimum patch 

size ℓ∗, population persistence depends on the density-emigration relationship and proximity of 

the actual patch size to ℓ∗. In all cases of matrix hostility, sufficiently small patches are predicted 
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to go extinct (𝑢 ≡ 0) and patch sizes greater than 𝜋 are predicted to have unconditional 

persistence as there is enough core size to ensure that the effects of the hostile matrix are 

mitigated. Specifically, for a hostile matrix (Fig. 2.6), there is no change in the minimum patch 

size between the DDE forms. 

 

Figure 2.5: Bifurcation-stability curve of population persistence within an intermediate hostility 

matrix. Solid curves indicate stable steady states and dashed curves indicate unstable steady 

states. The density-emigration forms include density-independent (DIE), positive (+DDE), 

negative (-DDE), u-shaped (uDDE), and hump-shaped (hDDE). Note, the scaling of the x-axis 

differs among DDE forms in order to more clearly show Allee and bistability regimes. 

 

For both a low (supplementary material) or an intermediate hostility matrix (Fig. 2.5), for 

DIE, +DDE, and hDDE, ℓ∗ is exactly the minimum patch size for the population to persist. 

Below this threshold patch size, successful colonization would not be possible and the population 

would go extinct. For patches whose size is greater than ℓ∗, the model predicts unconditional 

persistence for any positive initial density profile. However, populations with patch sizes below 

ℓ∗ but sufficiently close to ℓ∗, have conditional persistence. The model predicts an Allee effect 

for patches with this size range (Allee effect regime) for the -DDE or uDDE forms. An Allee 

effect arises in a reaction-diffusion model whenever the trivial state (zero population size) and a 
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positive steady state are both stable with at least one unstable state separating the basin of 

attraction for these stable states. For patches whose size is below the Allee effect regime, the 

model predicts population extinction. In patches with larger size, a mono-stability regime exists 

with predictions of unconditional persistence. 

 
Figure 2.6: Bifurcation-stability curve of population persistence within a high hostility matrix. 

Solid curves indicate stable steady states. The density-emigration forms include density-

independent (DIE), positive (+DDE), negative (-DDE), u-shaped (uDDE), and hump-shaped 

(hDDE). 

 

When matrix hostilities are low (supplementary material) and intermediate (Fig. 2.5), 

populations with -DDE forms are predicted to exhibit bi-stability in patches with size larger than 

ℓ∗ but sufficiently close to it.  Likewise, a similar bi-stability region exists in the case of hDDE 

for patches with size slightly larger than ℓ∗.  The bi-stability region predicts two positive steady 

states that are stable, with an unstable state partitioning the basin of attraction for these stable 

states. 

 For a high hostility matrix, the theoretical organism has a high probability of dying upon 

leaving the patch. Within this severe environment, model predicts a minimum patch size ℓ∗ 

(ℓ∗ ≈ 2.7; Fig. 2.6) that is the same for each of the forms of DDE and is larger than each of the 
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intermediate and low hostility matrix landscapes. However, for patches with size greater than ℓ∗ 

the model predicts population persistence. In such a high hostility matrix, the model predicts 

very little dynamical differences between density-emigration forms. 

 

DISCUSSION 

Ecological theory has been rather limited in its view of how density influences 

emigration. Although our literature review confirmed that +DDE and DIE are the most common 

forms of density-dependent emigration (36% and 30% of the cases, respectively), -DDE 

accounted for 25% of the cases and nonlinear forms (uDDE and hDDE) accounted for another 

9% of the cases. Importantly, our models suggest that these non-paradigmatic forms of DDE (-

DDE, uDDE, and hDDE) can cause interesting and complex within-patch dynamics that are not 

observed when considering only traditional forms of DDE. Specifically, our models reveal the 

possibility of Allee effects that can cause a decrease in minimum patch size, allow populations to 

persist in very small patches, and cause populations to suddenly crash if the patch is further 

reduced in area. Forms of DDE that have negative density-dependent emigration at high densities 

(-DDE and hDDE) can also have two steady states within smaller patches. 

We suggest that negative and nonlinear forms of DDE are more common than our 

literature review has revealed. Studies tend to use very few density levels, particularly 

experimental studies. In fact, 22% of the 145 studies used only two density levels; thus 

precluding the detection of nonlinear DDE. Another 21% of the studies used only three density 

levels, the absolute minimum number needed to detect nonlinearities in the density-emigration 

relationship. Necessarily, because of the replicated nature of experimental studies, the number of 

density levels is often small. In the case of our literature review, experimental studies used one-
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half as many density levels as observational studies, with a median of only 3.5 density levels. 

Furthermore, our analysis of the literature revealed that studies reporting evidence for DIE had a 

density range, measured as the ratio of the highest-to-lowest density level, that was one-half the 

range used to detect the other forms of DDE. The ability to detect density dependence in any of 

its forms (e.g., density-dependent per-capita growth) has long been known to be limited by 

sample size, number of densities, or range of densities (e.g., Fowler et al. 2006; Hassell 1986). 

Of course, these methodological limitations have been recognized by those who study species 

emigration. For example, the Glanville fritillary butterfly, Melitaea cinxia, was reported as 

having both -DDE and +DDE (Kuussaari et al. 1996; Kuussaari et al. 1998). By combining 

results from these two studies, and, effectively expanding the density range, Enfjall and Leimar 

(2005) concluded that uDDE was a better fit for this species. Clearly, future observational studies 

and experiments should include a broader range and number of densities to better characterize 

this relationship. 

Models have predicted that -DDE creates unstable populations in which population 

density is poorly regulated and thus unlikely in nature (Amarasekare 2004; Wolff 1997). Despite 

this theoretical disadvantage to populations, -DDE was found in one fourth of the studies. At 

least over a portion of the density range, -DDE is expected for species actively engaged in group 

living (Bowler and Benton 2005; Kim et al. 2009; Matthysen 2012). Intuitively, we would expect 

that as the density of a gregarious species gets too high, increased rates of emigration should 

follow (i.e., uDDE). Examples of a gregarious species exhibiting -DDE include the sociable 

weaver, Philetairus socius (Altwegg et al. 2014) and prairie voles, Microtus ochrogaster (Smith 

and Batzli 2006). In another interesting example, Jacob et al. (2016) established genetic lines of 

the ciliated protozoa Tetrahymena thermophile that displayed either low, medium, or high 
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degrees of aggregation. Those lines exhibited hDDE, -DDE and uDDE, respectively.  We 

attempted to explore whether gregarious species were predisposed to exhibiting -DDE or uDDE. 

However, for many species, it was impossible to categorize them in a binary way as either 

solitary or gregarious and there was insufficient information from the literature to divide them by 

degree of gregariousness.   

In addition to life history effects on DDE (see above), the form of DDE can also be 

phenotypically plastic and a function of pre-dispersal conditions. For example, longer exposure 

time to a higher number of conspecifics led to stronger -DDE in fruit flies, Drosophila 

melanogaster (Mishra et al. 2018). These high density environments could increase the stress of 

the individuals (Mishra et al. 2018) or provide ample opportunity for mates (see review by 

Kokko and Rankin 2006), decreasing emigration at high densities. Also, trophic interactions can 

promote gregarious behaviors, such as with the ciliate Paramecium aurelia, which changed from 

+DDE to -DDE in the absence and presence of predator cues respectively (Hammill et al. 2015). 

This change in emigration strategy is theoretically dependent on the predator-induced increase in 

costs of dispersal that outweigh the benefits of emigrating (Hammill et al. 2015). However, this 

change in the form of DDE is likely system dependent; the opposite result (+DDE) occurred for 

the backswimmer Notonecta undulata when predator cues were present (Baines et al. 2014).  

 Density-dependent emigration is an important factor that affects population persistence 

(Anholt 1995; Hanski 1999). In our model, both DIE and +DDE achieve a similar asymptotic 

stable state as patch size increases. This stability is inherent in standard population growth 

models and allows for local population persistence as emigration increases when densities reach 

carrying capacity (Dethier 1964). Populations near their carrying capacity would tend to favor 

the occurrence of DIE and +DDE and could explain why those two forms were found in two-
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thirds of all the cases we examined. Constant population persistence, however, is not universally 

found in nature (e.g., Turchin and Taylor 1992). Models have incorporated nonlinear density-

dependent emigration, which can increase or decrease population persistence times 

(Amarasekare 1998), change minimum patch size (Colombo and Anteneodo 2018), and affect 

the stability of predator-prey systems (Hauzy et al. 2010). To our knowledge, no other models 

have examined completely convex or concave uDDE and hDDE nonlinear response curves, 

which we show have more complex ecological consequences than nonlinearity alone. 

 Alternative forms of DDE change the persistence of populations within small patches 

with low to intermediate matrix hostility. The Allee effect regime found in populations with -

DDE and uDDE allows populations to persist in smaller patches than the other forms of DDE. 

However, population persistence and reproductive success change at minimum patch sizes 

(Butcher et al. 2010) particularly for area-sensitive species (Qing et al. 2016). As only a large 

population is able to persist in the Allee effect patches in our model, colonization by few 

individuals is unlikely to create a new population in these tiny patches. Divided populations from 

a newly fragmented large patch are the most likely inhabitants, which is why anthropogenic 

fragmentation is one of the leading causes of demographic Allee effects found in populations 

(Courchamp et al. 2008). The Allee effect is often connected with gregarious species that receive 

a benefit from cohorts (Kramer et al. 2018). Interspecifically, the Allee effect has been shown to 

induce multistability in predator-prey systems (Dhiman and Poria 2018). Although Allee effects 

are considered widespread, have been found in many taxa (Dennis et al. 2016), and could 

become more commonplace as our global climate warms (Berec 2019; Kramer et al. 2018), little 

empirical work has examined how Allee effects are directly caused by dispersal and habitat 

alteration (Kramer et al. 2009). Dispersal between populations with strong Allee effects allows 
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for population persistence (Wang 2016); however, populations in patches that are close to the 

minimum patch size are likely to crash due to stochastic events or minute decreases in the size of 

the patch. This has dire consequences for conservation biology as populations that appear to have 

high fitness may suddenly go extinct once they hit the extinction threshold in our model.  

Similarly, the negative slope of -DDE and uDDE changes the reaction norm and produces 

bi-stability regimes that allows the organism to colonize and persist at a much lower density 

level than the other DDE forms. The different attractors create alternative stable states and can 

create great fluctuations in population abundance that can result in population extinction 

(Petraitis and Dudgeon 1999; Sutherland 1990). Most empirical work with alternate stable states 

has been performed with passive dispersing plants (e.g., Bertness et al. 2002) or examining entire 

ecosystem shifts (e.g., Van De Koppel et al. 2001; van de Leemput et al. 2016). There is some 

empirical evidence of population bistability in either gregarious or -DDE species, such as the 

southern pine beetle (Martinson et al. 2013), Indo-Pacific sea urchin (Han 2016), and Daphnia 

(Nelson et al. 2001); however, emigration has not been directly connected to alternative stable 

states. This may be due to the lack of appropriately conducted studies, the majority of which 

focus on environmental changes as a treatment and do not report dispersal (for review see 

Schroder et al. 2005) or studies that focus on pest eradication instead of population persistence 

(e.g., Martinson et al. 2013).  

The scale at which the study is performed can determine the density-emigration 

relationship measured. For example, in peregrine falcons, Falco peregrinus, natal dispersal 

distance was density independent at local scales but negatively related to density on a regional 

scale (Morton et al. 2018). A limited spatial scale may exclude long-distance dispersers, resulting 

in altered density-emigration relationships (Morton et al. 2018). Additionally, density may be 
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heterogeneous across a landscape, and these differences in population density may affect 

dispersal decisions (Bitume et al. 2013) or promote aggregation only in highly suitable habitats 

(e.g., damselflies; Allen and Thompson 2010) that could lead to a false positive for -DDE. 

Finally, density-dependent dispersal decisions (e.g., avoidance of inbreeding or competition) 

may differ as costs and benefits of dispersing vary with spatial scale (Bowler and Benton 2005). 

However, few studies have examined density dependence at various spatial scales (but see 

Bowler and Benton 2005; Kim et al. 2009; Morton et al. 2018).  

For some species, the decision to emigrate may depend on exploratory forays into the 

matrix. If “foray loops” are common, as some studies with butterflies, birds and mammals 

suggest (e.g., Rivera et al. 1998, Roper et al. 2003, Conradt and Roper 2006), experiments that 

immediately remove individuals that exit the patch may overestimate emigration and predict 

spurious forms of DDE. Based on our literature survey, 14% of the experimental studies used 

this approach (Appendix A; 6 cases of DIE and 7 cases of +DDE). If the goal is to characterize 

the density-emigration relationship, we recommend allowing foray loops to occur or 

documenting that they are uncommon.  

Many patch- or regional-level DDE models do not consider matrix hostility, but the 

choice to emigrate and thus population persistence can be dependent on the quality of the matrix 

(Cronin 2007; Cronin and Haynes 2004; Roland et al. 2000). In high hostility matrices, each of 

the DDE bifurcation-stability curves has unconditional persistence, which is partially due to the 

high mortality in the matrix greatly decreasing the chance that emigrating individuals will reenter 

the patch. Additionally, the minimum patch size is greater in patches surrounded by a more 

hostile matrix due to a greater edge effect. The decrease in patch area creates a decrease in the 

percentage of the patch that is unaffected by the edge due to the ratio of edge to patch area 
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(Laurance 1991), ecologically creating a smaller patch despite the area (Fagan et al. 1999). As a 

more hostile matrix creates a stronger edge, the core of the patch correspondingly must be larger 

for a population to persist. However, once a core density is reached, population persistence is 

stable (Cronin 2009) and there is little need for rescue from other populations. 

The alternative forms of DDE create metapopulations that have more diverse interactions. 

In -DDE and hDDE, the innate Allee effect can decrease the rate of range expansion, creating a 

stable range (Amarasekare 1998; Wang 2016). As habitat is increasingly becoming more 

fragmented, the ability of populations to persist in smaller patches (as seen with -DDE and 

hDDE) may decrease the likelihood of metapopulation extinction. These small patches can then 

be used as stepping stones, which are crucial for long-distance range expansion (Saura et al. 

2014), especially for -DDE species that are more likely to emigrate at low densities. A highly 

hostile matrix, however, will minimize the chances of rescue or colonization of patches, which 

will increase chances of extinction (Vandermeer and Carvajal 2001) and decrease range 

expansion speed.  Lastly, change in the strength of the Allee effect can change the rate of range 

expansion, creating models that over- or under-predict the actual speed (Walter et al. 2017). 

Understanding both environmental and intrinsic density-dependent factors will better predict the 

movement of invasive species and metapopulation persistence in a fragmented landscape.  

 

CONCLUSIONS 

Although our literature review supports the view that density-independent and positive 

density-dependent emigration should be most common in nature, we found negative density-

dependent emigration in one-fourth of the cases and nonlinear density dependence in another 9% 

of the cases. Because studies often include few density levels or focus on a relatively narrow 
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range of densities, nonlinear forms of DDE may have gone undetected. Methods that incorporate 

greater number and range of density treatments in addition to using more rigorous non-linear 

statistics could improve the chances of detecting these forms. Primarily, research should focus on 

regression-based experimental designs that incorporate densities at both very low densities and 

those at and above carrying capacity. Life history (e.g., gregariousness) as well as different 

dispersal conditions (e.g., temporal variability and environmental cues; Hammill et al. 2015; 

Baines et al. 2014) should be addressed or manipulated to assess plasticity in behaviors that 

might promote different forms of DDE. Lastly, statistics should not only incorporate quadratic 

analyses, but more flexible models capable of detecting a wider range of nonlinear forms, such 

as uDDE or hDDE (e.g., Simonsohn 2018). As our simple analytical model suggests, 

understanding these DDE forms can be critical for estimating population persistence, particularly 

in small patches. For example, rarely considered forms of DDE (-DDE, uDDE, hDDE) yield 

Allee effects and bi-stability regimes that are not inherent in the more well-known forms of DDE 

(i.e., DIE or +DDE). These new population dynamics can lead to important biological 

consequences such as population extinction and changes in source-sink dynamics.   
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CHAPTER 3. 

MOVEMENT BEHAVIOR OF ISCHNODEMUS CONICUS (VAN DUZEE) 

IN FRAGMENTED SALT-MARSH HABITATS 
 

INTRODUCTION 

Habitat fragmentation transforms the landscape through selective environmental 

destruction that leaves multiple habitable areas that are smaller, more isolated, and divided by a 

less hospitable matrix (Fahrig 2003; Lindenmayer and Fischer 2006). The individuals inhabiting 

these subdivided habitat fragments (patches) move within and among the patches, influencing 

local population dynamics and metapopulation connectivity (Barton et al. 2009; Cantrell and 

Cosner 2007). Across the globe, fragmentation of habitats has increased through human activities 

(e.g, development of agriculture and urbanization; Saunders et al. 1991), which can threaten 

population persistence (Anholt 1995; Debinski and Holt 2000; Hanski 1999), since an increase in 

patch isolation or matrix hostility may influence intrapatch movement (e.g, planthoppers; Haynes 

and Cronin 2006) and boundary behavior (e.g., butterflies; Ricketts 2001) and limit emigration 

and gene flow (e.g., limpets; Cossu et al. 2017). Data concerning an individual’s response to 

fragmentation are difficult to obtain and often the least understood aspect of the biology of a 

species (Evans et al. 2018; Hooten et al. 2017; Patterson et al. 2017).  

The movement of individuals within a patch determines the likelihood of encountering 

the edge. In homogeneous conditions, a correlated random walk model and diffusive patterns of 

movement often adequately describe an individual’s movement behavior (Hanski 1998; Johnson 

2005). Intrapatch movement (e.g., speed, step lengths, and turning angles) may be biased by 

factors such as the abundance of resources (Franke and Yakubu 2008; McClintic et al. 2014; 

Wiens et al. 1995), presence of conspecifics (e.g., by use of aggregation pheremones; Bartelt et 
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al. 2008; Stevenson et al. 2017), interspecific competition (Senger et al. 2007), and presence of 

predators (Hammond et al. 2012; Sun et al. 2016).   

If intrapatch movement is random, the likelihood of individuals encountering the patch 

edge is higher in smaller patches, which provides more opportunities for emigration to occur 

(Haddad 1999; Hanski 1998). However, if there is an abrupt change in environmental quality at 

the patch border, the hostile matrix may create edge effects that limit emigration (Fagan et al. 

1999; Leopold 1933; Ries and Sisk 2010), as individuals can aggregate at (e.g., flying squirrels; 

Desrochers et al. 2003) or avoid the edge instead (e.g., birds, voles, parasitoids, and amphipods; 

Cronin 2009; Gates and Gysel 1978; Jacob and Brown 2000; Margules et al. 1994). Dispersal is 

often context-dependent, for example with changes in movement tortuosity in different 

landscapes (e.g., planthoppers and damselflies; Haynes and Cronin 2006; Jonsen and Taylor 

2000; Pither and Taylor 1998) or with an emigration response to density (e.g., ciliates and 

fritillary butterfly; Jacob et al. 2015; Kuussaari et al. 1996; Kuussaari et al. 1998). Strong natural 

selection of dispersal ability may create dispersal dimorphisms, such as wing length, that can 

limit the long-distance dispersal capability of the individual (e.g., planthoppers, crickets, and 

aphids; Holder and Wilson 1992; Langellotto and Denno 2001). 

Individual movement behavior provides information on the spatial structure of the 

population (e.g., clumped and over-dispersed patterns) that may indicate species behaviors, such 

as beneficial aggregating or intraspecific competition (Hooten et al. 2017; Patterson et al. 2008; 

Wiegand and Moloney 2014). Additionally, individual movement decisions can influence the 

form of the density-emigration relationship (e.g., density-independent, positive, negative, u-

shaped, hump-shaped) and alter population and metapopulation persistence (Amarasekare 2004b; 

Harman et al. 2020). For example, species that form aggregations often show negative density-
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dependent emigration (DDE) (e.g., damselflies, fruit flies, and fleas; Allen and Thompson 2010; 

Mishra et al. 2018; Tripet et al. 2002), as individuals are less likely to leave high densities due to 

a benefit of group living. Species with positive DDE, on the other hand, are prone to leave 

crowded densities and establish themselves in habitats with few to no conspecifics (Amarasekare 

2004b). 

To assess individual behavior and movement as a reaction to fragmentation, we studied 

Ischnodemus falicus (Say) (Hemiptera: Blissidae), a gregarious blissid bug that is a common pest 

on marsh cordgrass (Spartina spp.) (Wheeler 1996) in fragmented environments. Little empirical 

research has studied I. falicus (but see Johnson and Knapp 1996) or its congeners, and nothing is 

known concerning its dispersal behavior. Here, we assessed the potential for long-distance 

dispersal by quantifying the proportion of macropterous (long-winged) individuals. Macroptery 

is a common measurement of dispersal propensity (e.g., Denno et al. 2001; Poniatowski and 

Fartmann 2011; Strong and Stiling 1983) as brachypterous (short-winged) individuals often lack 

the ability to fly long distances. Additionally, we assessed the density-emigration relationship, 

predicting a negative DDE form as the species aggregates.  

Lastly, movement behavior and spatial distribution of individual insects within a Spartina 

patch, hostile sand matrix, and at the edge between was quantified from paths created by 

continuously watched individuals in gridded landscapes. We hypothesized tortuous movement 

with few steps within the habitat and edge landscapes that would result in clumped distribution. 

In contrast, movement within the sand matrix was predicted to have little tortuosity and larger 

step size that would allow the insect to cross the hostile matrix quickly.  These assays on 

movement can be used as the first step toward developing predictive models for population 

dynamics. 
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MATERIALS AND METHODS 

Study system 

Smooth cordgrass, Spartina alterniflora (Loisel) (Poaceae) is a dominant low marsh, 

perennial species native to the Atlantic and Gulf coasts that thrives in high salinity environments 

(see review by Subudhi and Baisakh 2011). Genetically identical, circular patches of cordgrass 

are often created as the plant primarily propagates vegetatively (Daehler and Strong 1994). In 

this harsh and fragmented habitat, the blissid bug, Ischnodemus conicus, feeds on the leaf sheaths 

and the xylem or phloem of smooth cordgrass (Harrington 1972). I. conicus was originally 

described from Texas (Van Duzee 1909) and its range includes the states along the Gulf of 

Mexico and Atlantic, with Virginia as the most northern state (Slater and Baranowski 1990). 

Little biology of the species is known, but its only reported host plant is S. alternifora and it is 

primarily located on the coast (Harrington 1972).  

The range of I. conicus greatly overlaps I. badius (Van Duzee) and, although information 

concerning this species is also very limited, the two species may share the same host and 

compete (Rey 1981). Harrington (1972), however, recorded I. badius on S. pantens (Aiton) 

Muhl. alone, which may indicate that the report by Rey (1981) included misidentified I. conicus 

(Slater and Baranowski 1990).  

Using the Florida Lygaeidae key (Slater and Baranowski 1990), we identified our bugs as 

I. conicius based on the color and morphology of the pronotum and interocular distances, which 

are longer for I. conicus than I. badius individuals. Additionally, our insect included 

macropterous individuals whereas I. badius has been reported as primarily micropterous (Slater 

and Baranowski 1990). I. falicus (Say), was also considered due to its similarity in appearance, 

but was eliminated based on host plant, distribution, and pubescence character. Voucher 
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specimens were submitted to the Louisiana State Arthropod Museum (reference identification 

LSAM0272350 - LSAM0272362 and LSAM0272363 – LSAM0272364).  

Many species within the Ischnodemus genus exhibit long and short wing (macropterous 

and brachypterous respectively) morphs including I. sabuleti (Fallén) and I. slossonae (Van 

Duzee), while other species additionally have micropterous forms, such as I. badius (Van Duzee) 

(Slater and Baranowski 1990). I. falcius has been noted as social (Johnson and Knapp 1996) and 

produces a distinct odor (Wheeler 1996 and personal observation) that may be indicative of a 

communication or aggregation pheromone, there is no support that any species in the genus 

benefits from group living. 

I. conicus is an ideal insect to study movement as it has a large body size that can easily 

be marked, its sex is distinguished by size (females are 30% longer than mature males) and 

immature juveniles can be identified by both small size and red coloration. The insect has slow 

movement both within and between cordgrass patches and the path is traceable. The landscape in 

which I. conicus resides is dynamic, with habitat lost through coastal erosion, rising oceans, and 

anthropogenic landscape modification (Boesch et al. 1994); whereas, in another location, 

restoration dredging projects create new landmasses, often using S. alterniflora as the primary 

provider of soil erosion resistance (Subudhi and Baisakh 2011; Zedler 2000). The dispersal of I. 

conicus individuals may determine the persistence of and ability to expand its range into the 

newly formed habitats. Additionally, data concerning movement can provide generalizable 

information of metapopulation conservation in disturbed habitats. 
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Field surveys and experiments 

Research was conducted within a saltmarsh adjacent to the Cameron Jetty Pier in 

Cameron, Louisiana, USA. The site included numerous patches of S. alterniflora on the sandy 

beach that were above the average high tide mark (Fig. 3.1). Occasionally, storm activity would 

result in water levels several centimeters above the ground. Here, the highest adult I. conicus 

population densities occurred in September through December with few individuals found during 

the rest of the year. In October and November 2017 surveys, populations had clumped 

distribution, with an average of 2.7 (variance = 19.7; Fig. 3.1) insects per stem (approximately 

1260 insects per square meter) and aggregates as high as 30 insects on a single S. alterniflora 

stem. Additionally, we found very few I. conicus individuals at our study site within the adjacent 

S. patens patches at any time of the year. 

 

     

Figure 3.1. Image of Spartina alterniflora landscape on the Cameron Jetty Pier, Cameron, LA, 

with the small patches common around the edges of larger patches (left). Aggregates of I. 

conicus on S. alterniflora stems (right).  

 

Field survey: I. conicus emigration  

To determine the proportion macropters in the Cameron Jetty I. conicus population, we 

collected 150 males and 180 females between the collection dates of September 12 and October 
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3, 2015. On each date, the insects were collected by sweep netting ten 2 m x 2 m sections of S. 

alterniflora patches. They were transported to the lab on ice and subsequently frozen. The right 

forewing of each insect was measured from the edge of the pronotum to the tip of the membrane 

while attached to the insect as well as the full body length using an ocular micrometer inserted 

into the eyepiece of a dissecting microscope (20-times magnification). The ratio of wing length 

to body length was calculated for each individual and a histogram created using Microsoft Excel 

2016.  

 

Field experiment: Density-emigration relationship 

Between June and October 2015, an experiment was performed at the Cameron Jetty Pier 

to assess the relationship between I. conicus density and the proportion emigrating from a 30 cm 

diameter (33 ± 7 stems; mean ± SE) patch that was surrounded by a bare-sand matrix at least 50 

cm wide. Patches of this size were common and often supported I. conicus individuals. Thus they 

were found or created by cutting stems below the sand to reduce the diameter of the patch to the 

desired size. Based on a previous experiment (R. R. Harman unpublished data), these 30-cm 

diameter patches are not so small as to preclude natural boundary behavior by I. conicus. In 

comparison to an equivalent area of host plants within a much larger Spartina stand, the 

proportional loss of marked and released I. conicus was 1.4 times lower in the discrete patch (T19 

= 4.09, p < 0.001).  

Using sweep nets, adult female I. conicus were collected from large S. alterniflora 

patches along the Cameron Jetty’s marsh. As brachypterous individuals dominated the samples 

(see Results), all tests were performed with only brachypters. Densities ranging from 3-180 were 

used. The highest density used in the experiment was twice the density of I. conicus per stem 
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observed within the landscape during peak activity (5.5 compared to 2.7 insects per stem). Using 

a wide range of densities has been shown to increase the ability to detect different forms of 

density-dependent emigration, including non-linear relationships (e.g., u-shaped and hump-

shaped; Enfjall and Leimar 2005; Fowler et al. 2006; Harman et al. 2020). 

After collecting the insects, we placed them into vials and chilled them on ice for 15 

minutes. We then transferred the insects to a vial lightly coated with Dayglo fluorescent powder 

(Dayglo Corporation, Cleveland, Ohio, USA) and gently tumbled the individuals to mark them. 

This marker has been used in other dispersal studies with insect movement (e.g., Cronin 2003; 

Dickens and Brant 2014; Fryer and Meek 1989; Turchin and Thoeny 1993) with no significant 

harm to the insect nor changes in dispersal behavior. Male I. conicus and juveniles were not used 

because the movement of gravid females primarily determines population spread (Cronin 2003; 

Dickens and Brant 2014; Haynes and Cronin 2003). To mediate environmental effects on 

dispersal, trials were limited to days that were sunny to partially overcast. Replicate releases that 

occurred during pre-storm conditions with elevated wind speeds were removed from the dataset. 

All releases occurred between 10 a.m. and 3 p.m.  

The 30 cm patches were cleared of insects via sweep netting before the vials with I. 

conicus were placed upside down into the center of the patch for 30 minutes. After the insects 

settled, the vial was gently removed. Marked insects remaining in the patch were counted 180 

minutes after release by carefully searching each stem. Dead insects that had not left the release 

point after three hours were subtracted from the initial density (mean dead ± SE = 19% ± 4).  

Proportion emigrated was calculated as the (number remaining in the patch) / (initial density – 

number died). We performed a total of 34 mark-release trials. 
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The density-emigration experiment was repeated with 6 additional releases in September 

2016, using the same methods and density range as in the previous year. To determine the 

relationship between density and the proportion emigrating, and whether it was linear or 

quadratic, we used Akaike information criteria corrected for small sample size (AICc) to choose 

the most informative model. The full model included year of study, density and density2. Year 

was treated as a fixed factor and not a repeated measure because different generations occur each 

year and individuals were collected from a wide area, making the bugs used between the two 

time periods largely independent of one another. The model with the smallest AICc value was 

selected as best fit, but all competing models with a delta AICc value <2 were considered to have 

substantial support (Burnham et al. 2011). If the quadratic form was selected by the model, it 

was further checked for a full change in slope, as expected from a humped- or u-shaped 

relationship. We used the Robin Hood method (Simonsohn 2018) to estimate if the curve 

included both a significant negative and positive line. 

 

Greenhouse experiment: Individual movement in landscapes 

Patch arenas 

An individual’s decision to move within a habitat can determine its chances of finding the 

edge and thus emigrating from the habitat. However, measuring the diffusion rate of marked 

insects within the large, dense Spartina patches at Cameron was challenging as the insects were 

difficult to locate after release (1.5% recovery) and the high densities needed to obtain sufficient 

data from replicated mass mark-recapture experiments was not feasible. Thus, we created 

simplified landscape arenas based on the methods in Haynes and Cronin (2006). All experiments 

were performed within a greenhouse at Louisiana State University (Baton Rouge, Louisiana, 
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USA) to limit weather-related interference. To minimize variation in nutritional quality of S. 

alterniflora, small shoots were collected from one main source patch at the Cameron Jetty Pier in 

November 2016. We potted 3 to 5 rhizomes in sand in 14 x 14 cm “habitat” pots and fertilized 

with half a tablespoon of 14:14:14 (N:P:K) Osmocote slow release pellets (The Scotts Company, 

Marysville, OH) every six months. This stem density was 41% of that observed in the field (204 

stems/m2 and 490 stems/m2 respectively) so movement could be more easily monitored within 

the experimental patch. 

We created patch arenas of 140 x 140 cm by placing the pots together in a 10 x 10 square 

with the sand filled to the rim. Pitfalls between pots covered with insect netting and leveled off 

sand. To form a grid to trace the movement of individual insects, we subdivided each pot into 

quarters using flagging tape, resulting in a 20 x 20 grid of 400 7 x 7 cm cells (Fig. 3.2). 

 

 
 

Figure 3.2. 140 x 140 cm S. alterniflora patch designed to assess movement of individual I. 

conicus. The landscape was divided into 7 x 7cm cells in a 20 x 20 grid. 

 

 

In February and March 2017, I. conicus were collected from Cameron Jetty Pier, chilled 

on ice during transport to LSU, and then transferred to potted S. alterniflora until needed for 

experiments. Insects were kept for a maximum of 7 days and were only used once before 
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discarding them. Adult brachypterous females and males, as well as juveniles, were used in the 

microlandscape experiments to quantify the movement behavior of the main life stages of this 

bug. For each trial, 2-3 individuals from each age and sex class (total 6-8 individuals) were 

randomly selected from our reservoir of bugs. They were chilled on ice for 15 minutes and then 

gently tumbled in vials lined with Dayglow powder. The individuals within each age and sex 

class were marked with different colored pigments for easy identification.  

Marked insects were allowed to settle for 20 minutes inside vials at the release point 

within the center of the arena. After the vials were gently lifted and the insects were released, 

individual movement within the grid and timing of movement was recorded continuously for 5 

hours. Additionally, at 20-minute intervals, the location of stationary individuals was checked by 

carefully searching the stems at the last known location of the insect. This more active search 

provoked no apparent reaction from the bugs and was necessary as I. conicus often crawls 

between the stem and the leaf sheath to forage and are out of view. Only 9 of the 67 individuals 

used in the experiment were lost during the observation period and these individuals were 

subsequently excluded from any analysis. The pots in which the insects came into contact were 

replaced before the next experiment. Pots of S. alterniflora were reused after a minimum of a 

week had passed and the plants had recovered from any visible signs of herbivory. Ten replicate 

patch arenas were used, and the behaviors of 58 individuals were recorded.   

 

Habitat-matrix edge arenas 

To assess boundary behavior of I. conicus individuals, a similar landscape to the patch 

arena was used to make the edge arenas. The S. alterniflora habitat pots were used in addition to 

“matrix” pots (14 x 14 cm) that were filled with sand. Due to the limited dispersal observed in 
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the previous habitat landscapes, we were able to use a smaller 10 x 12 pot arena for the edge 

landscapes (Fig. 3.3). The edge was 5 pots wide, and both the patch and the matrix extended 3 

pots deep.   

 

 
 

Figure 3.3. Edge landscape used to assess movement of individual Ischnodemus conicus. 

Colored vials placed at the patch-matrix boundary contain insects for release. The landscape was 

divided into a 10x12 grid, consisting of half sand matrix and half S. alterniflora habitat.  

 

Repeating the methods used in the habitat landscapes, insects were chilled, marked, and 

settled in inverted vials in the center of the landscape. The release was always within the 

cordgrass patch, but at the edge (Fig. 3.3). The timing and location of movement was 

continuously recorded for 5 hours. To limit biased movement due to the greenhouse 

environment, the arenas were disassembled and rotated by 90˚ between replicate trials. Five 

replicate arenas were used for a total of 32 recorded movement paths (not including 5 lost 

individuals).  

 

Matrix landscapes 

Movement within the matrix was analyzed in arenas created by leveling sand on an 86 x 

86 cm plywood board. A 12 x 12 grid with 7 x 7 cm cells was created using flagging tape and 
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overlain on the sand (Fig. 3.4). As before, 6 to 8 individuals were chilled, marked, and allowed 

to settle in the inverted vials. After the vials were removed, the position within the grid and time 

of movement of each individual was recorded continuously for 3 hours. By the third hour, all of 

insects had left the arena. To eliminate potential odor cues left by the insects, the sand was 

removed between replicates and replaced. Ten replicate landscapes were used with 62 released 

individuals (7 bugs were excluded from the analysis because they disappeared from the system 

too quickly for any movement data to be recorded and an additional 3 were excluded as they died 

during the experiment).  

 

 
 

Figure 3.4. Sand matrix arena used to assess movement of individual Ischnodemus conicus. The 

landscape was divided into a 12 x 12 grid with 7 x 7 cm cells. 

 

Data and statistical analysis of movement 

The overall rate of movement of an individual is determined by the movement velocity, 

tendency to move, and path tortuosity (Bowler and Benton 2005; Russell et al. 2003). Similar to 

the methods in Haynes and Cronin (2006), for individuals within each landscape, the movement 

velocity was measured as the mean step length (cm) per 5min interval. Biased population drift 

was assessed as the mean difference in X and Y coordinate (Turchin and Thoeny 1993) in 

displacement (cm) from the release point to insect location 5 hours later (habitat and edge 
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landscapes) or 15 minutes later (matrix landscape). If the 95% confidence interval overlapped the 

release area (within 3cm of 0), population drift did not occur.   

The angle between each step was calculated for paths that had 2 or more step lengths. 

The angle at time t was plotted against the angle at t + 1 for each path. A significant correlation 

between the two angles and a high R2 would indicate a correlated random walk, whereas a lack 

of a correlation or low R2 value would reflect complete random movement. Path tortuosity was 

additionally assessed by calculating the fractal dimension (Fractal D) for each individual within 

the matrix; however, the movement paths of individuals in both the habitat and edge landscapes 

had too few of steps (mean ± SE: 2.7 ± 0.5 and 4.4 ± 1.6 respectively) to properly assess the 

Fractal D of each path. Fractal D estimates range from 1 to 2 with outputs near 1 representing 

highly linear movement and near 2 suggesting random Brownian movement (Mandelbrot 1967). 

Although the fractal method has been criticized (Turchin 1996), it has often been validated as a 

proper estimate of movement behavior (Doerr and Doerr 2004; Rogers et al. 2013). The Fractal 

D for each path was calculated with Fractal 4.0 software 

(http://www.nsac.ns.ca/envsci/staff/vnams/Fractal.htm) using the fractal mean method, which 

corrects for estimation errors when the last divider step does not fall on the edge of the path 

(Mandelbrot 1967). 

We additionally assessed the spatial pattern within each replicate using second order 

spatial point-pattern processes commonly used to assess insect dispersion in a landscape (e.g., 

Alspach and Bus 1999; Hahn et al. 2017; Wehnert and Wagner 2019). Point-pattern processes 

compare the spatial relationship on pairs of points to determine if the individuals are 

hyperdispersed, clumped, or random in space when compared to a completely spatially random 

(CSR) model (Wiegand and Moloney 2014). We used the pair-correlation function (g(r)), which 
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compares the arrangement of data points within multiple spatial scales using growing circles of 

radius (r). The function can assess the scale at which a change in spatial pattern occurred (if any) 

as well as the difference in intensity of the point density when compared to CSR, which can be 

estimated using the shape of the estimation (Perry and Enright 2006; Wiegand and Moloney 

2004). Larger point densities that decline to a CSR of 1 indicate a clustered pattern while 

patterns that increase from CRS indicate hyperdispersion at r. As CSR equals one, the point 

density is a multiple of the random expected diffusion (e.g., a value of 20 indicates a 

neighborhood density that is 20 times higher than expected with a random pattern).  

The spatial arrangement of individuals at five hours after release was used for analysis 

using the statistical package spatstat in RStudio. Null expectations of CSR were constructed with 

95% confidence envelopes generated by the Monte Carlo simulation with 1000 iterations for 

each replicated release. The scale of the radius was automatically set to 1, the 7 cm width of the 

cell. Graphic outputs were created by the spatstat package were used to compare the calculated 

values to the null expectations. Analysis of spatial displacement between juveniles, males, and 

females was also calculated within each replicate using pairwise g(r) comparisons. Lastly, 

density heat maps were created to display the difference in dispersion among replicates as well 

as among juveniles, males, and females within replicate.  

In addition, initial movement in the edge microlandscape was recorded by dividing the 

movement into three equal probability occurrences, assuming random movement, of along the 

edge (330-30˚ and 150-210˚), into the patch (30-150˚), or into the matrix (210-330˚) relative to 

the border (Haynes and Cronin 2006). This was assessed using chi-square goodness-of-fit tests 

with 1000 Monte Carlo simulations for each microlandscape using RStudio (with the expectation 

that each direction would have 1/3 chance to be selected). Movement metrics were tested for 
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normalcy using Goodness of Fit tests in RStudio. Failure of this test resulted in analysis using 

Kruskal-Wallis tests as the data could not be normalized by transformation due to being heavily 

skewed with 0s. Data figures were created using JMP and movement data was represented by a 

figure drawn in Microsoft PowerPoint 2016.  

 

RESULTS 

Field survey: I. conicus emigration 

Both adult male and female I. conicus are wing dimorphic. The majority of the 

population, 90% females and 96.7% males, consists of the short-winged phenotype with a wing-

body length ratio that ranged from 0.16 to 0.31 (Fig. 3.2). Macropterous individuals had a 

distinctly greater wing:body length ratios, ranging from 0.4 to 0.57 (Fig. 3.2). Only 10% of 

females and 3.3% of males were macropters (N = 180 and 150, respectively; Fig. 2). In all of our 

time in the field and conducting experiments in the greenhouse, we have never observed any 

individuals in flight. 
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Figure 3.5. Histogram of the wing:body length ratios for female (N = 180; black bars) and male 

(N = 150; grey bars) Ischnodemus conicus collected from Cameron, LA. Images are of a 

brachypterous (left) and macropterous (right) female, and the inset bar graph depicts the percent 

males and females that were macropterous. 

 

Field experiment: Density-emigration relationship 

The density-emigration relationship was concave-nonlinear with a quadratic fit to the 

data (F2,37 = 6.97, p = 0.003, R2 = 0.27; Fig. 3.6). The full model (x + x2 + year; AICc weight = 

0.85) was selected by the AICc analysis. All other models were not supported by the model 

selection (Table 3.3). At low and high densities, the emigration in 2016 appears greater than in 

2015. The Robin Hood method showed no evidence that the curve had a significant negative 

followed by a significant positive slope that would indicate a u-shaped relationship (left side: p = 

0.001, right side p = 0.217, break at a density of 71.51).  
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Figure 3.6. The density-emigration relationship of female blissid bug Ischnodemus conicus from 

experimental trials conducted in 2015 (circles) and 2016 (diamonds). The best fit model of a 

quadratic curve with 95% confidence bands is shown. 

 

 

Table 3.1. Ischnodemus conicus density-emigration model selection results using Akaike’s 

information criterion corrected for small sample size (AICc).  

Model AICc ΔAICc AICc weight 

x + x2 + year -23.29 0 0.85 

x + year -19.08 4.2 0.10 

x + x2 -16.56 6.73 0.03 

year -15.18 8.11 0.01 

x -9.52 13.76 0 

0 64.12 87.41 0 

 

 

Greenhouse experiments: Individual movement  

Movement within the patch 

 The 58 I. conicus insects released within the patch arena displaced a mean distance of just 

2 cells (15.08 cm) within 5hours (Fig. 3.7). The 46 insects that did move changed direction 

(95.02˚) between short steps (0.57 cm) and made slow progress (0.10 steps per 5 m; Table 3.2). 

The path did not differ from a random walk due to the lack of correlation when path angle at 
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time t was regressed against the next angle at time t + 1 (F1,23 = 0.86, p = 0.36, y = 0.07 x + 

74.07; Fig. 3.8). The majority of movement occurred within the first three hours (55.6, 23.3, and 

11.9% of the steps taken during hours 1, 2, and 3, respectively) with little movement in the 

fourth or fifth hour (6%, and 3% of total steps, respectively, Fig. 3.9). The displacement of 

individuals was unbiased in direction as the population did not drift from the release area (0-3 

cm, XY) with the mean (±95% CI) locations of X and Y equaled to -5.9 cm (±5) and -1.2 cm 

(±3.5) away from the exact center, respectively.  

When comparing among the classes of females, males, and juveniles, the overall 

displacement was 2.6 times greater for females than juveniles. Two-thirds of the 12 insects that 

did not move from the release cell were juveniles (displacement = 0 cm for 1 female, 3 males, 

and 8 juveniles). However, the paths of individuals that did move were not significantly different 

in speed, step size, nor turning angle among the three classes (Table 3.3). 

 

Table 3.2. Effect of habitat type on Ischnodemus conicus movement behavior. The Kruskal-

Wallis analysis (Hdf) was performed for each comparison of the movement paths within the 

Spartina alterniflora patch (P), edge of the patch (E), and sand matrix (M) arenas. Comparison 

tests are summarized in the “effect” column. 

Dependent variable Patch Edge Matrix Statistic Effect 

Displacement (cm) 15.08 ± 2.49 12.02 ± 1.84 49.65 ± 0.96 H2=77.0, p<0.0001 M > P,E 

Speed (steps per 5m) 0.10 ± 0.04 0.10 ± 0.04 3.08 ± 0.47 H2=83.62, p<0.0001 M > P,E 

Step size (cm) 0.57 ± 0.14 0.53 ± 0.10 116.18 ± 17.81 H2=83.57, p<0.0001 M > P,E 

Turning angle 95.02 ± 10.57 100.81 ± 11.98 75.75 ± 7.94 H2=3.53, p=0.17 M=P=E 

Fractal D N/A N/A 1.27 ± 0.04   
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Figure 3.7. Movement and final location of individual Ischnodemus conicus within all replicate 

arenas. Numbers within the quadrant represent the number of individuals residing there at 5 

hours. Five representative paths were selected to show the varying ranges of displacement with 

step locations (markers). For each path, the starting point was within the 14 x 14 cm center (dark 

outline). 

 

 

  

A. Spartina alterniflora habitat arena 

B. Edge arena 

C. Matrix arena 
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Figure 3.8. Tests of random walk for I. conicus paths with two or more angles between 5 min 

steps. Linear regression with 95% confidence bands is shown for insects released in the patch (N 

= 25; dashed line), edge (N = 20; solid line), and matrix (N=69; dotted line). There is no 

correlation for any line, suggesting the paths fit a random walk model. 

 

 

As expected with the limited displacement of individuals, the I. conicus populations 

released into each patch arena replicate were clumped in distribution at spatial small scales 

(Table 3.4; Appendix 1). Interestingly, in the 7 arenas with at least 2 insects of each class, 

displacement patterns differed between sex and age. In each arena, females were hyperdispersed 

from other females, but were generally clumped with males and juveniles (Table 3.4). Males 

showed a similar trend, but in 6 of the 7 arenas and maintained hyper-dispersion for shorter 

distances than females. Lastly, juveniles were clumped at small spatial scales in 6 of the 7 

arenas. This indicates that the movement, although similar in speed, step size and turning angle, 

occurred in different directions with females actively separating from each other, juveniles 

moving in tandem, and males moving somewhere in between.  Although this displacement is 

calculated with only 2 to 3 individuals in each class, the pattern is replicated in each arena. 
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Figure 3.9. Mean (±SE) cumulative number of steps taken by individuals released within the 

habitat landscape during each hour of continuous observation.  

 

 

Table 3.3. Effect of sex and age class on Ischnodemus conicus movement behavior within the 

patch arenas. The Kruskal-Wallis analysis (Hdf) was performed for each test of movement 

variables. Comparison tests between females (F), males (M), and juveniles (J) are summarized in 

the “effect” column.  

Dependent variable Female Male Juvenile Statistic Effect 

Displacement (cm) 22.12 ± 5.21 14.72 ± 4.07 8.36 ± 2.95 H2=8.59, p=0.01 F > J 

Speed (steps per 5m) 0.08 ± 0.02  0.13 ± 0.08 0.03 ± 0.01 H2=1.44, p=0.49 F=M=J 

Step size (cm) 0.55 ± 0.11 0.84 ± 0.35 0.28 ± 0.05 H2=2.95, p=0.23 F=M=J 

Turning angle 92.63 ± 15.39 91.86 ± 17.62 105.81 ± 18.34 H2=0.48, p=0.79 F=M=J 
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Movement at the patch-matrix edge 

The movement of I. conicus insects released in the edge arenas was not significantly 

different from those released in the patch arenas (Table 3.2). The 32 released insects displaced a 

mean distance of 2 cells (12.02 cm) and the 28 individuals that left their release cell moved 

slowly (0.10 steps per 5 min; mean step size = 0.57 cm) and often turned between each step 

(mean turning angle = 95.02 degrees; Table 3.2) with a lack of correlations between 

consecutively taken angles, suggesting a random walk (F1,18 = 0.06, p = 0.81, y = -0.05x + 59.23; 

Fig. 3.8). The variables of overall displacement as well as the step size, speed, and turning angle 

of movers did not differ between females, males or juveniles (Table 3.5). Similar to the patch 

arena, the majority of movement in the edge arena occurred in the first few hours after release 

(58, 30, and 11% of the total steps occurred in the 1st, 2nd, and 3rd hours, respectively) with only 

1% of steps within hour 4 and no movement in the 5th hour (Fig. 3.10).  
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Table 3.4. Summary of output of the point-pattern processes for each of the ten replicate habitat landscapes. Spatial pattern (clumped, 

random, and hyperdispersed) were estimated at different scales (radius = r) the pair-correlation function (g(r)) (see Appendix 1 for 

graphic output). 
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Although path variables were similar in the patch and edge arenas, the direction of 

movement was influenced by the addition of a hostile sand matrix. The initial direction was 

biased along the edge of the patch (65%) rather than moving into the patch (32%) or into the 

matrix (3%; χ2 = 14.72, p < 0.001). Within the 5 hr observation window, only 5 insects entered 

into the matrix at any point, never moved beyond 7 cm into the sand, and quickly returned to the 

patch (mean ± SE = 5.8min ± 1.66). The movement of individuals did generate drift into the 

habitat side of the arena with a mean X and Y (±95% CI) of 2.2cm (±3.1) and -7.7cm (±3.71); 

however, the highest population densities were found along the edge (14 insects in the 10 cells 

along the edge compared to the 18 insects in the 50 cells of the patch).  

 

 
Figure 3.10. Mean (±SE) cumulative number of steps taken each hour by individuals released in 

the matrix. 
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Table 3.5. Effect of Ischnodemus conicus sex and age class on movement behavior within an 

edge arena. Measurements reported as mean ± SE for each class. The Kruskal-Wallis analysis 

(Hdf) was performed for each test and results from the multiple comparison between female (F), 

male (M), and juvenile (J) are summed in the “effect” column. 

Dependent variable Female Male Juvenile Statistic Effect 

Displacement (cm) 16.38 ± 3.46 10.74 ± 2.99 8.08 ± 2.52 H2=4.65, p=0.10 F=M=J 

Speed (steps per 
5m) 

0.11 ± 0.03  0.15 ± 0.09 0.06 ± 0.02 H2=1.63, p=0.44 F=M=J 

Step size (cm) 0.51 ± 0.10 0.71 ± 0.28 0.40 ± 0.11 H2=0.88, p=0.65 F=M=J 

Turning angle 119.67 ± 18.35 77.32 ± 20.88 101.92 ± 29.47 H2=2.01, p=0.37 F=M=J 

 

In each of the five replicate edge landscapes, the individuals were clumped at a radius of 

0 (Table 3.6; Appendix 2); however, the scale at which the populations stayed clumped was 

generally smaller in the edge arenas (60% and 0% of arenas were clumped at r = 1 and 2, 

respectively) than the patch arenas (90% and 30% of arenas clumped at r = 2 and r = 3, 

respectively; Table 3.3). Similar to the patch arena, there were replicable differences in 

dispersion patterns when comparing within class. Females and males were more likely to be 

hyperdispersed from their own sex (80% of arenas at r = 0) with females maintaining hyper-

dispersion at greater scales (Table 3.5). Juveniles were often clumped with each other at r = 0 

(60% of arenas), similar to the patch arena (71% of arenas). Similar to the patch arenas, 

populations released at the edge of the habitat included females moving in opposing directions to 

each other, juveniles moving more in tandem, and males moving at angles to one another, all 

with similar speed, step size, and angular paths. 
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Table 3.6. Summary of output of the point-pattern processes for each of the 5 replicate edge 

arenas. Spatial pattern (clumped, random, and hyperdispersed) were estimated at different scales 

(radius = r) the pair-correlation function (g(r)). Displacement was further compared between 

males, females, and juveniles within each replicate arena using the point-pattern process. (see 

Appendix 2 for graphic output).  

 

Movement within the matrix 

 The I. conicus released in the matrix arena displaced at least 4-times further (49.65 cm) 

with a 30-times greater speed (3.08 steps per 5 min) and steps 218-times longer (116.18 cm) than 

the insects released in the habitat and edge arenas (Table 3.2). Individual movement within sex 

and age class did not differ in displacement, speed, step size, nor turning angle (Table 3.4) and 

all insects left the arena within 3 hr (mean = 70 min). The movement paths of the I. conicus in all 
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arenas were similar in mean angle and also lacked a correlation between consecutive angles (F1,67  

= 2.23, p = 0.13, y = 0.17x+74.07; Fig. 3.8), suggesting a random walk; however, the fractal 

analyses of each path suggested more linear paths than a random walk (fractal D = 1.27 ± 0.04). 

Lastly, there was no population drift of movement with a mean X and Y (±95% CI) of 3.89 cm 

(±3.84) and 1.94 cm (±2.82), respectively, 15 minutes after release. 

 

Table 3.4. Effect of Ischnodemus conicus sex and age class on movement behavior within a 

matrix arena. Measurements reported as mean ± SE for each class. ANOVA (Fdf) analysis was 

performed for normal data whereas Kruskal-Wallis analysis (Hdf) was performed as a 

nonparametric analysis. Results from the multiple comparison tests between the classes Female 

(F), male (M), and juvenile (J) are summed in the “effect” column 

Dependent variable Female Male Juvenile Statistic Effect 

Displacement (cm) 49.39 ± 1.54 50.20 ± 1.65 49.15 ± 1.94 F2=0.10, p=0.90 F=M=J 

Speed (steps per 5m) 3.14 ± 0.76  3.82 ± 0.84 1.56 ± 0.55 H2=3.45, p=0.18 F=M=J 

Step size (cm) 16.00 ± 3.67 22.02 ± 4.83 7.95 ± 3.00 H2=3.44, p=0.18 F=M=J 

Turning angle 82.18 ± 12.63 58.40 ± 13.68 95.86 ± 12.06 F2=1.77, p=0.80 F=M=J 

Fractal D 1.3 ± 0.07 1.23 ± 0.06 1.27 ± 0.09 H2=0.78, p=0.68 F=M=J 

. 

 

DISCUSSION 

The gregarious nature of I. conicus appeared to strongly influence the lack of movement 

within the habitat and the density-emigration relationship; however, once emigrated, the 

movement paths of the individuals were linear and, compared to the speed within habitat areas, 

fast (Table 3.1). The lack of movement within the habitat and edge landscapes was surprising as 

we expected the individuals to move randomly until finding a proper host plant. 
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Movement within the habitat 

Random movement within a patch increases the chances of an individual encountering 

the edge of the habitat; however, I. conicus individuals appeared to find a suitable, close food 

source and remain there throughout the continuous observation window of 5 hours and displaced 

little more in 24 hours. The lack of movement may be due to the individuals maintaining an 

aggregation at the release area. Like other chinch bugs in the family Ischnodemus sp. can be 

highly gregarious, primarily as juveniles and as adults when copulating (Johnson and Knapp 

1996; Wheeler 1996), an observation that we also made in the field. Aggregating species 

theoretically receive some benefit from group living (e.g., Gascoigne et al. 2009; Hammill et al. 

2015; Serrano et al. 2005) that outweighs the costs of limited resources, but this benefit is 

unknown for I. conicus and, as far as we know, has not been studied for the genus as a whole. 

Other hemipteran species profit from an increased defense against predators (e.g., treehoppers 

and aphids; Cocroft 1999; Siddiqui et al. 2019), assistance in rearing offspring (see review by 

Mas and Kolliker 2008) and a greater mating success (e.g., water striders; Han and Brooks 

2014). If there is cooperative interaction within I. conicus populations, the clustering created by 

short-distance dispersal may increase local population size (Harada et al. 1995) and stability.  

If clustering is not induced by cooperative-based behavior, populations with low dispersal 

rates are expected to have lower reproduction, delayed maturity, and higher mortality rate due to 

overcrowding and resource limitation (Harada et al. 1995; Stamps et al. 1987). In this scenario, 

the lack of movement may be due to the close availability of S. alterniflora stems, which are 

used as food and refuge. If resources are readily available, there is little need to move and search. 

In the field, recapturing marked individuals proved difficult in larger patches, as we needed to 

peel back the S. alterniflora leaves to locate hidden insects beneath the leaf sheath. This behavior 
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is similar in S. pectinata habitats, where I. falicus both lays its eggs and aggregates within the 

leaf sheaths (Harrington 1972; Johnson and Knapp 1996; Wheeler 1996). Once hidden within the 

leaf sheath, the insect is unlikely to move, even when exposed by searching methods. 

 

Movement at the patch-matrix edge 

The limited movement in the edge landscapes was similar to that in the habitat (Table 

3.1), which may be related to the gregarious nature of the species or an equal resource 

availability for the insects at the edge compared to the interior of the patch. For congeners, 

several individuals have been reported to be sustained by one grass stem (Johnson and Knapp 

1996), thus the need to move further into the patch to find more abundant resources may be 

minor. Alternatively, the abrupt change to the harsh sand matrix created a boundary that 

promoted movement parallel to the edge. This barrier can also be reflective, with individuals 

moving back into the habitat instead of emigrating out, as seen with ladybird beetles (Kareiva 

and Perry 1989) or aphids (Kareiva 1987); however, even though there was some population 

drift into the habitat, the highest densities were at the edge of their landscape (Fig. 3.10). Dense 

populations at the edge have been attributed to greater resource availability (e.g., game and bird 

species Gates and Gysel 1978) or refuge space (e.g., small mammals Bartholomew 1970) at the 

merging of the two habitat types. However, with a harsh matrix deprived of a food source and a 

random arrangement of plants of a standardized quality in the habitat, aggregation at the edge 

due to an increase in resources is not likely.  

Edge-biased distributions are common in insect species (see review by Nguyen and 

Nansen 2018) and a higher hostility matrix bordering a patch can reduce the permeability of 

dispersal at the edge, particularly if the change in habitat is abrupt (Fagan et al. 1999; Ries and 
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Debinski 2001), as in our landscapes. Aggregation at the patch edge has been noted in several 

insect taxa including butterflies, flour beetles, planthoppers, and aphids (Athanassiou et al. 2005; 

Campbell and Hagstrum 2002; Haynes and Cronin 2003; Nowicki et al. 2014). The interspecific 

interactions between edge-aggregating species can further alter a species’ movement patterns 

(Fagan et al. 1999), for instance, with parasitoid and predator movement (e.g., Altamirano et al. 

2016; Reeve and Cronin 2010). The sand matrix found around S. alterniflora stands at our site 

could be considered high in hostility as there is no refuge nor food there.  

 

Emigration out of a habitat 

In addition to the matrix hostility at the habitat edge, an individual may consider its 

knowledge about the landscape to make adaptive or appropriate dispersal decisions. 

Theoretically, the benefits of dispersing must outweigh the risks for emigration to occur (Bowler 

and Benton 2005). Like other gregarious species in Blissidae, I. conicus may use chemical cues 

to sense its environment to weigh the risks (e.g., southern chinch bug, Blissus insularis (Barber) 

(Addesso et al. 2012)). Similar to Adesso et. al (2012) with the chinch bug and Wheeler (1996) 

with I. conicus, we noticed a distinct, pungent odor, which would suggest a released volatile 

compound. If used for aggregation, these odor cues can maintain nonsocial gregarious 

populations (Courchamp et al. 2008). The presence of conspecifics often indicates a high quality 

patch (Gilbert and Singer 1973), especially for a gregarious species. Without these cues, such as 

with our edge landscapes located in the middle of a greenhouse, there would be no perceived 

benefit of emigrating into a hostile matrix, unlike with our field patches. 

As aggregating species receive some benefit from group living, theoretically, the 

population should emigrate with a negative relationship to density (Bowler and Benton 2005; 
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Matthysen 2005), but if resources are limited due to high densities, emigration should be 

promoted in very high densities (Jacob et al. 2016; Kim et al. 2009). Initially, we hypothesized 

that the density-emigration relationship would be negative, but the shape was quadratic, 

displaying a uDDE form. Although this curve did not fit the requirements of Simonsohn (2018), 

many papers measuring density-dependence utilize only quadratic regressions and AIC model 

selection to stipulate a full curve of the data (e.g., Altwegg et al. 2014; Jacob et al. 2016; Kim et 

al. 2009)..  

In a review of the frequency of occurrence of different forms of DDE, Harman et al. 

(2020) found only 9 other cases of u-shaped DDE, representing only 6% of the studies, 

concluding that u-shaped DDE may be more readily found if methods included a wider range of 

released densities. As determined by the Robin Hood method (Simonsohn 2018), the upward 

trend in our u-shaped curve started at a density of 79 insects per 30 cm diameter patch (Fig. 3.6). 

This is an average density of 2.4 insects per stem, which is slightly below the 2.7 insects per 

stem found in the field during high population events. By increasing the release density to twice 

that of the highest densities, we were able to see the u-shaped form. Although we pushed the 

densities, this high treatment is not irrelevant as it was not uncommon to find stems harboring 

groups as high as 30 insects in the landscape, particularly during the copulation season. 

Additionally, populations that persist in a shrinking patch will automatically become denser as 

the area declines. As the beaches along the Gulf of Mexico shrink with rising ocean levels, and 

the S. alterniflora habitats are reduced in number and area, these high densities could become 

more prevalent unless the population maintains carrying capacity by increasing emigration into 

the matrix. 
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Movement within the matrix 

When released within the matrix, the insects had low residency time and moved 

unbiasedly in direction directly off of the landscape. Although the movement tortuosity of I. 

conicus in the matrix could not be compared to the short path lengths of insects released in the 

habitat and edge landscapes, the fractal D of I. conicus (1.28) is similar to that of other species 

searching for resources. For example, in an experiment by Haynes and Cronin (2006), 

planthoppers (Prokelesia crocea) displayed more linear movement in harsh, mudflats (mean 

fractal D ≈ 1.1) and in an undesirable, exotic food source (mean fractal D ≈ 1.2) than in their 

primary food (mean fractal D ≈ 1.5). The  absence of a resource chemical cue with wheat bulb 

fly (Delia coarctata) resulted in a more linear path (fractal D = 1.11) than when presented with 

the cue (fractal D = 1.22) at low concentrations  (Rogers et al. 2013). Lastly, in treecreepers 

(Passeriformes: Climacteridae), individual birds that had a larger search area had less tortuous 

paths and more direct movement towards potential resources (Fractal D range ≈ 1.0 – 1.5), 

primarily with males in an attempt to avoid competition. The differences in the fractal dimension 

of paths may reflect the behaviors of the individuals and relate to how one perceives its 

environment, with less tortuous movement potentially indicating movement between resources 

(Wiens et al. 1995).  

Dispersers typically suffer costs in the matrix, such as higher risks of predation, failure to 

find a new resource, reduction in fecundity, or death (see review by Bonte et al. 2012). They may 

use fast, linear movement in an attempt to quickly transfer through the harsh environment 

(Farina 2000). These costs can occur either within the matrix itself or are a lingering effect of 

prior investment into dispersing (Bowler and Benton 2005). Movement within high hostility 

landscapes often increases these costs and the death of most dispersers may create dimorphism of 
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dispersal traits (Roff 1994), such as wing length in insects (e.g., planthoppers and crickets Denno 

1994; Langellotto and Denno 2001). With I. conicus, long-winged females were 3-fold more 

numerous than macropterous males in Cameron. Long-distance dispersal of females may be 

evolutionarily selected as gravid females can establish new populations without needing a male 

(Haynes and Cronin 2003). However, brachypterous morphs often have higher reproduction and 

are preferred over winged morphotypes in stable environments (Addesso et al. 2012; Denno et al. 

1991). The cost of long distance dispersal may be high in the isolated Cameron populations, 

promoting a higher proportion of brachypters, which may be why we observed only short-

distance walking movements contrary to reports of I. conicus as a flying house pest in Texas 

(Merchant 2011).  

 

Metapopulation connectivity 

Overall, the movement behavior of I. conicus suggests that large populations will be able 

to persist in stable habitats; however, in landscapes that are becoming more fragmented, gene 

flow between populations and colonization of uninhabited marsh areas may be restricted. I. 

conicus has shown limited long-distance dispersal, as the population is primarily composed of 

brachypterous individuals that form aggregates in a habitat. The Allee effect that is innate in 

aggregating species creates stable ranges (Amarasekare 2004a; Wang 2016) as individuals are 

less likely to emigrate from competition in high densities as well as establish in uninhabited 

patch. Additionally, similar to other species in its family, I. conicus may create dense populations 

by using an aggregating pheromone, a lure that cannot be sensed with the far distances separating 

isolated habitats and is missing altogether in empty habitats. 
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Even though populations of gregarious species can thrive in high densities in small 

patches, any reduction in the patch size could result in sudden population extinction (Harman et 

al. 2020) with little chance of dispersing individuals rescuing the population, particularly in a 

highly hostile matrix (Vandermeer and Carvajal 2001). Although more stable but less preferred 

habitats can be used as refuges (Elkin and Possingham 2008) or stepping stones for dispersal, the 

habitats need to be spatially clustered to maintain metapopulation connectivity for organisms 

with limited dispersal ability (Doak et al. 1992). Additionally, when the cost of movement is 

high, emigrants are more prone to first identify the their destination patch and then move directly 

towards it, resulting in the majority of individuals entering the same, often closest, patch and 

minimizing the inter-patch connectivity of a landscape (Barton et al. 2009). 

For highly disturbed (e.g., wave action and storms) and constantly eroding coastal 

environments, rescue and colonization events may determine the persistence of a population. At 

the current rate of coastal erosion, areas along the coast where S. alterniflora thrives are 

predicted to be submerged by 2025, limiting the current habitats for I. conicus. Through dredging 

projects that build new land to replace areas removed by industrialization, such as building 

refineries, S. alterniflora habitats are created along the Gulf coast. However, colonization of 

uninhabited marsh areas, such as those created by dredging, is theoretically difficult for this 

aggregating, short-distance dispersing species. 

 

CONCLUSIONS 

Our assays of individual movement, spatial arrangement, and density-dependent 

emigration, suggest that Ischnodemus conicus populations have a trifecta of intrinsic (gregarious 

behavior and morphology) and extrinsic (landscape) variables that promote large population 
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persistence in stable environments yet hinder dispersal between populations and range 

expansion. The gregarious nature of these insects, as shown by the clustered dispersion and u-

shaped density-emigration form, limits competition and local population extinction of high 

densities. This lack of movement is enforced by the individual’s morphology, as long-distance 

dispersal is restricted by the brachypterous population majority and the potential use of 

aggregating pheromones. The harsh boundary and hostile nature of the mud matrix further 

impedes emigration from the habitat, as the edge is not very permeable to individuals, who 

instead move along the boundary and aggregate. Those that do emigrate are likely to move 

linearly into the closest occupied patch and this population may go extinct unless the densities 

are high enough to bypass the Allee effect.  

All three variables of this system limit population connectivity and the potential for range 

expansion because individuals are less likely to leave their original patch and enter into a new 

habitat or one with few conspecifics. In habitats changed by disturbance, fragmentation, or 

habitat loss, population persistence is often assisted by metapopulation connectivity through 

dispersal; thus, the attributes that promote large populations of I. conicus in stable environments 

may now threaten its existence.  

Further research is needed to determine if the pheromone excreted by the species serves 

to lure conspecifics or if it has other functions, such as sex identification, communication, or 

predator deterrent. Lastly, further empirical work concerning how individual movement behavior 

influences population and metapopulation spatial distribution and connectively is needed.  
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CHAPTER 4. 

REDUCTION IN DISPERSAL IS CAUSED BY CONCURRENT 

SELECTION OF COMPETITIVE ABILITY IN RANGE EXPANDING 

POPULATIONS  
 

INTRODUCTION 

In disturbed environments, such as those influenced by climate change, habitat 

fragmentation, or exotic species introductions, an individual’s fitness depends on its ability to 

compete locally or to disperse to a more suitable habitat (Fahrig 2003; Ferriere and Legendre 

2013; Pither and Taylor 1998). In rapidly changing environments, dispersal is theoretically 

favored, as movement allows offspring to be distributed across different environmental 

conditions in a bet-hedging strategy (Armsworth and Roughgarden 2005; McPeek and Holt 

1992). Dispersal influences spatial population dynamics, such as population persistence (Bowne 

and Bowers 2004; Cronin and Haynes 2004; Kendall et al. 2000) and the speed of range 

expansion (Fronhofer and Altermatt 2015; Neubert and Caswell 2000; Phillips 2015). 

Understanding species’ range dynamics is highly relevant to conservation (Caplat et al. 2016; 

Huntley et al 2010) and invasion biology (Lustenhouwer et al. 2019; Svenning et al. 2014); 

however, the spatio-temporal context of range expansion is poorly understood (Masson et al. 

2018; Melbourne and Hastings 2009), as eco-evolutionary dynamics often differ between the 

habitat’s core and front of an expanding range (Fronhofer and Altermatt 2015; Suarez and 

Tsutsui 2008; Urban et al. 2007).  

The population characteristics of dispersal, density-dependence (e.g., competition), and 

growth rate (e.g., fecundity) are intrinsic to population dynamics (Burton et al. 2010) and 

changes to any one of these three characteristics (termed “DCF” for dispersal, competition, and 

fecundity) are likely to influence the other two (Bonte et al. 2012; Fronhofer and Altermatt 
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2015). Trade-offs may be evolutionarily acquired and plastic to changes in environment 

conditions (e.g., Jacob et al. 2020; Liang et al. 2018; Mishra et al. 2018).   

The range core, the initial location of an expanding population, is expected to have high 

densities (e.g., Hudina et al. 2015; Szucs et al. 2017; Weiss-Lehman et al. 2017; but see 

Fronhofer and Altermatt 2015; Dallas et al. 2017). This competitive environment theoretically 

selects individuals with low fecundity and other K-selected traits (e.g., Burton et al. 2010; 

Lachmuth et al. 2011) as parents invest more energy into fewer offspring in an attempt to 

increase fitness. Consequently, population growth rates decrease to limit additional competition 

(e.g., Davis 2005; Martin and Martin 2001) and individuals may emigrate to escape the 

competitive pressure (Hamilton and May 1977; Travis and Dytham 1999).  

Emigrating individuals are likely predisposed to dispersal though a combination of 

phenotypic traits, often referred to as dispersal syndromes (Buoro and Carlson 2014; Clobert et 

al. 2009; Cote et al. 2017). These syndromes may include a plastic response to environmental 

conditions (Holt 1987; Lowe and McPeek 2014), such as density (Amarasekare 2004b; Bowler 

and Benton 2005) and landscape hostility (Haynes and Cronin 2006; Ricketts 2001). On the 

other hand, syndromes may include morphological or behavioral phenotypes that give the 

individual an advantage when dispersing (Matthysen 2012; Mishra et al. 2018) or ability to 

detect or avoid competition (Ravigne et al. 2006; Willi and Fischer 2005). Changes in emigration 

from the core may affect the probability of population extinction (Amarasekare 2004b; Harman 

et al. 2020) and colonizing at the range front (Bowler and Benton 2005).  

Individuals that disperse to the range front are likely exposed to different biotic selection 

pressures (Travis et al. 2005; Travis and Dytham 2002; Hughes et al 2007) that lead to the 

evolutionary divergence of the DCF traits (e.g., Fronhofer and Altermatt 2015; Ochocki and 
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Miller 2017; Weiss-Lehman et al. 2017). Through spatial sorting, the best dispersers accumulate 

at the range front (compared to less-mobile individuals in the core) and, if dispersal syndromes 

are heritable, dispersal propensity may increase with each generation and accelerate range 

expansion (Phillips 2015; Monty and Mahy 2010). Founder effects may increase the rate of trait 

evolution (Masson et al. 2018; Shine et al. 2011; Philips et al. 2008). With low competition, 

populations may have increased growth rates (Hanski et al. 2004; Phillips 2015) with individuals 

characterized by r-selected traits (Burton et al. 2010). However, the lack of genetic variability 

increases kin competition (Van Petegem et al. 2018) and inbreeding (Banks and Lindenmayer 

2014; Gros et al. 2008) within the growing range front population.  

However, as the propensity to disperse and competitive ability are both energetically 

costly and often trade off evolutionarily in populations (Fronhofer and Altermatt 2015), any 

additional inter- or intra-specific competition at the range front may slow down the speed of 

range expansion and dampen population growth (Alzate et al. 2017; Svenning et al. 2014; Urban 

et al. 2012). Within the range front, establishing individuals often compete with native species, 

which may slow the range expansion speed as dispersing individuals trade off dispersal prowess 

with higher interspecific competitive ability (Svenning et al. 2014) or facilitate emigration and 

thus further range expansion as individuals avoid competition altogether (Cantrell et al. 2007). 

Interspecific competition may halt expansion altogether through competitive exclusion (Nguyen-

Ngoc et al. 2012) or alternative stable states created by priority effects of the first established 

species (Belyea and Lancaster 1999; De Meester et al. 2016). Conversely, the static core 

population may compete with a newly established competitive species that is expanding its own 

range (e.g., Engelen and Santos 2009). Interspecific interactions within range ecology have been 

given much theoretical attention, particularly with invasive species movement (Dunstan and Bax 
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2007; Fisher 1937; Fraser et al. 2015; Hastings et al. 2005); however, empirical studies to 

support the models are lacking (Burton et al. 2010; Kubisch et al. 2014). 

Populations in expanding ranges have been classically studied by placing selection 

pressure on either dispersal or competitive abilities and measuring the response of each DCF trait 

(e.g., Arnold et al. 2017; Weiss-Lehman et al. 2017; but see Alzate et al. 2017). However, 

evolutionary selection of multiple traits may influence survivorship, inter- and intra-specific 

competitive behavior, and colonization rate (Burton et al. 2010). Here, we provide the first 

comprehensive experiment that tests for multi-trait selection of two competing species. First, we 

tested the evolutionary response of selection pressure applied to multiple traits, specifically to 

both competitive and dispersal ability concurrently. We predicted that the additive selection 

pressures would reduce the extent to which each DCF trait is selected in populations representing 

the range front and core (as modelled by Burton et al. 2010). Second, we directly tested the DCF 

response of selecting for fecundity, which is often measured as a trade-off, but primarily as a 

response to competition and dispersal selection. We predicted that selection for high fecundity 

would increase the individual’s ability to disperse at the cost of its ability to compete. Third, we 

the evolution of DCF traits may differ between species, we placed similar selection pressures on 

2 species that are known competitors with the expectation that the weaker competitor would 

show a greater decrease in DCF traits with competition selection pressures. Lastly, we test if the 

different selection pressures would change interactions with a competing species and predict that 

high competition would promote temporary interspecific coexistence with high dispersers 

compared to selection for higher dispersal alone. 

 To address these hypotheses, we bred separate selection lines for 6 generations that 

selected for each DCF trait as well as each combination of high- and low-selected intraspecific 
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competitive and dispersal abilities, creating 10 selection lines (5 lines representing the range core 

and front populations) and one control. We used the model research species red flour beetles 

(RFB, Tribolium castaneum (Herbst) (Coleoptera, Tenebionidae)) and confused flour beetles 

(CFB, T. confusum (DuVal)) that are commonly used to investigate competition and dispersal in 

a controlled environment (e.g., Arnold et al. 2017; Campbell and Hagstrum 2002; Weiss-Lehman 

et al. 2017). 

 

MATERIALS AND METHODS 

Study system 

Since the 1940s, flour beetles in the genus Tribolium have been used in experiments due 

to their availability, manipulability, and short generation time. Both RFB and CFB are global 

grain pests found wherever grain is stored, such as in granaries, mills, and warehouses; however, 

CFB are less common in sub-tropical and tropical areas than RFB (USDA 2015 and personal 

observation).  Both CFB and RFB complete their entire life cycle in the milled flour that is their 

food source, so it is relatively simple to conduct laboratory experiments with the beetles in a 

simulated “natural habitat”. The generation time (egg to adult) for CFB is approximately 34 days 

whereas RFB is slightly shorter at 30 days, which allows for multi-generational experiments in a 

timely manner. A flour beetle lifespan is 1-3 years and depends mostly on optimal temperature 

and humidity (USDA 2015). Female fecundity is dependent on density with female RFB 

fecundity commonly ranging from 12-16 eggs per day and CFB females laying 7-12 eggs per 

day (Birch et al. 1951).  

RFB and CFB not only compete over resources, but they also predate upon each other 

(Alabi et al. 2008; Dawson 1967). RFB are generally noted as the superior competitor (Park 
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1948); however, competition exclusion experiments result in neither species excluding the other 

and community persistence is common (e.g., Birch et al. 1951; Goodnight and Craig 1996; Park 

1948) despite the high niche overlap of the two species (Edmunds et al. 2003). 

Unlike CFB, RFB adults are capable of flight, but they primarily move by walking 

(Romero et al. 2009). As their food source is temporary and populations can quickly grow, flour 

beetle dispersal between resource patches is common (Campbell and Hagstrum 2002; Ziegler 

1976). Dispersal ability of the flour beetle has been tied to an individual’s morphology (Arnold 

et al. 2017) and sex (Stevenson et al. 2017), population density (Agashe and Bolnick 2010), and 

environmental quality (Van Allen and Rudolf 2016). Dispersal ability is genetically dominant 

with one to a few loci determining the trait (Korona 1991; Ritte and Lavie 1977) and the ability 

rapidly evolves across expanding ranges (Weiss-Lehman et al. 2017). 

 

Creation of genetic lines 

To ensure genetic diversity, flour beetles were collected from several granaries in 

Louisiana (October 12-20, 2017), Indiana (December 22-27, 2017) and Kentucky (December 28-

30, 2017) (for a full list of locations, see Appendix A) as well as purchased from the Carolina 

Biological Supply Company (Burlington, NC). Flour beetle species (T. castaneum and T. 

confusum) were separated, and beetles from different locations were mixed into populations. 

Populations of both species were maintained at ≤10 beetles per gram (half the maximum 

equilibrium capacity of beetles noted in Park (1948)) in containers containing 200 g of a standard 

medium (95% whole wheat flour and 5% nutritional yeast). All experiments were conducted in 

growth chambers at standard environment of 30˚ C, 70% ± 5 RH, and 24/7 darkness at Louisiana 

State University, Baton Rouge, Louisiana, USA. Thirty populations of each flour beetle species 
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were maintained throughout the experiment by mixing individuals from the different populations 

every 2 generations spanning 2 months. These founding populations became the control for all 

experiments.  

Dispersal, competition, and fecundity (DCF) traits were selected for using CFB and RFB 

from the control populations nine generations after beetles were collected from the field. On 

September 4, 2018, pupae were removed from the control populations. Solitary individuals 

placed into 10 g cups with 2 g flour and left to mature into virgin adults for 2 wk. These beetles 

were designated as “generation 0”, and individuals were randomly placed into 3 groups for trait 

selection, one for each DCF trait.  

 

Dispersal lines 

To separate high and low dispersers of each flour beetle species, rectangular prism 

dispersal arenas (Fig. 4.1) with a path run length of 120 cm were created. The landscape 

consisted of 10 g flour patches (5 cm long x 5 cm wide x 2 cm deep) alternating with 5 x 5 x 2 

cm matrix of whole wheat berries (15 g). Neither CFB nor RFB can consume whole wheat 

berries and beetles preferred not to inhabit the matrix (only 10-30% were found in the whole 

wheat berries; Harman unpublished data). The purpose of the matrix was to slow the speed of 

dispersal and allow the beetles to colonize distinct patches. To select for dispersal propensity, 

100 beetles (10:1 ratio of beetles to flour) were anesthetized with CO2, gently stirred into the 

patch of flour at one end of the arena, and placed in the growth chamber for 24 hours, giving 

them sufficient time to disperse according to Weiss-Lehman et. al (2017). Four replicate 

landscapes with 100 released insects in each were placed in the same environment chamber. 

After the dispersal period, each of the patches and matrix habitats were separated, and the flour 
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beetles in each patch and matrix were counted. The low dispersal selection line (DL) was bred 

from the 40 beetles with the shortest dispersal distances (the lower 10%) whereas the high 

dispersal selection line (DH) was bred from the 40 individuals with the highest dispersal distance 

(the upper 10%). Five random insects from either the upper or lower 10% were placed in 10 g 

flour (N = 8) for 1 week and removed. The eggs laid during this time became the first generation, 

and 25 days later, after maturing into pupae, this generation was separated into individual 10 g 

cups consisting of 2 g flour, keeping the males and females separate. Two to 3 wk after the pupae 

emerged as adults, the virgin beetles were placed in the arenas using the same methods as used 

for generation 0. From the DH line, the highest 10% of dispersers in the arenas were collected 

and bred for the second generation. Likewise, DL lines were bred from individuals with the 

lowest 10% dispersal distance each generation. As before, four replicate releases of 100 beetles 

were used. Six generations were bred with these selection parameters; however, at the 4th 

generation, the 120 cm landscape was lengthened to 180 cm due to a higher proportion of 

individuals moving the full length of the arena.  

 

 

Figure 4.1. Image of the dispersal landscape used to separate high and low dispersers and 

measure dispersal variables. The arena consisted of three adjacent 60 x 5 x 5 cm rectangular 

prisms that connected to each other and allowed a beetle to move a maximum distance of 180 

cm. The white squares are habitable patches of flour whereas the brown squares are less 

habitable areas of whole wheat berries.  
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Competitive lines 

For both CFB and RFB, selection for competitive ability was concurrently done for six 

generations after separating from the control. High competitive ability was favored by rearing 

juveniles in environments with high density (>20 larvae per gram of mix) whereas low 

competitive ability was selected for by rearing juveniles in low density environments (<5 larvae 

per gram of mix). High competition selected lines (CH) were created by placing 10 adult insects 

in 10 g of flour for 1 wk and, assuming 5 females laid ten eggs each day, the final egg density 

was approximately 350 eggs in each 10 g container. Low competition selection lines (CL) 

included 5 adult beetles in 10 g of mix that were removed a week later. To further limit 

competition, the egg-laden flour was subdivided into 5 2 g portions and mixed with 8 g of fresh 

flour with an approximate final egg density of 35 eggs per 10 g of flour (assuming an average of 

2.5 females laying 10 eggs each day) and a 10-fold difference in larval densities between the 

high  and low competition lines. Ten replicate high competition populations and 20 replicate low 

competition populations were made using 100 parental beetles each generation. For low 

competition-selected lines, 250 offspring that survived and matured into pupae in the cups with 

the lowest juvenile densities (approximately 10 cups) were separated into individual cups with 2 

g of flour and used to breed the next generation. From the high competition line, 250 pupae were 

randomly selected from the highest juvenile density populations (5 of the cups) and also placed 

individually into cups. After 2-3 wk, the newly emerged adults were bred together using the 

same protocols for each line. 
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Dispersal-competitive lines 

To assess if competitive ability selection affected a disperser’s dispersal propensity, 400 

of the generation 0 offspring that survived the high competition densities were placed in the 

dispersal arenas and the individuals that moved the furthest (top 10%) and shortest (bottom 10%) 

were the first generations of DHCH and DLCH respectively. Similarly, 400 beetles of the low 

competition generation 0 offspring were selected for and against dispersal propensity, creating 

the DHCL and DLCL lines. The selection of these four lines fit the protocol parameters for both 

competitive ability and dispersal propensity each generation of both RFB and CFB.  

 

Fecundity lines 

Lastly, selection for high and low fecundity (FH and FL respectively) was accomplished 

by placing one virgin pair into 10 g of flour for one week with 30 replicates. The offspring from 

the 2-3 most fecund females were bred for the HF line in each generation whereas the offspring 

from the least fecund females (approximately 10 females) were bred for the FL line.  

Altogether, 10 selection lines were bred and one control line was maintained (Table 1). 

These lines represented the different selection pressures of the range core and range front. In the 

core, selection would theoretically favor low dispersal ability (DL), high competitive ability (CH), 

and low fecundity (FL); however, the core also selects for these traits concurrently (DLCH) and 

may contain low densities with low levels of competition (DLCL). The range front, on the other 

hand, is colonized by dispersers (DH) that are likely to become more fecund (FH) as selection for 

competitive ability is low (CL). Selection pressure to compete and disperse coincidently adds 

pressures on the population in both the expected low densities of the front (DHCL) as well as high 
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densities (DHCH) that may be created over generational time or found when two populations 

meet. 

 

Table 4.1. Summary of the methods used to select the 11 different lines with designated 

acronyms. 

Trait Selection for trait Selection against trait 

Dispersal 

propensity (D) 

High dispersal (D
H
) 

Individuals with the highest 10% dispersal 
distance selected. (Range front) 

Low dispersal (D
L
) 

Individuals with the lowest 10% dispersal 
distance selected. (Range core) 

Intraspecific 

competitive ability 

(C) 

High competition (C
H
) 

Individuals that survive to pupal stage in 

high density environments of >20 larvae 

per gram of mix. (Range core) 

Low competition (C
L
) 

Individuals surviving to pupal stage in 

low density environments of <5 larvae per 

gram of mix. (Range front) 

Fecundity (F) 

Low fecundity (F
L
) 

Individuals selected from breeding pairs 

producing the most offspring. (Range 

front) 

High fecundity (F
H
) 

Individuals selected from breeding pairs 

producing the fewest offspring. (Range 

core) 

Dispersal 
propensity x 

Intraspecific 

competitive ability 

(DC) 

Low dispersal, high competition (D
L
C

H
)  

High dispersal, high competition (D
H
C

H
)  

Lines selected for high competition are 

additionally selected for high or low 

dispersal propensity. (Range core and 

front respectively) 

Low dispersal, low competition (D
L
C

L
) 

High dispersal, low competition (D
H
C

L
) 

Lines selected for high competition are 

additionally selected for high or low 

dispersal propensity. (Range core and 

front respectively) 

 

Control (T) 

Control (T) 

Thirty populations maintained and interbred every other generation to limit selection 

 

Measuring dispersal propensity 

For the dispersal selection lines, dispersal propensity was measured during the selection 

process for high and low dispersers (N = 400 insects per selection). The location within 5 cm 

intervals was recorded for each individual beetle. At generation 0, and the final generation 6, 

RFB and CFB from the CH, CL, FH, FL, and T lines were also released at a density of 10 insects 

per gram mix in the dispersal arenas to record dispersal distance for a total of 200 insects 

released in 4 replicate dispersal arenas for each selection line. Replicates with less than a 90% 
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recovery rate were discarded and replaced with a fifth replicate using different insects within the 

selection line.  

The dispersal experiment provided four key measurements of dispersal propensity: net 

displacement, maximum distance, proportion emigrated, and diffusion. Net displacement was 

calculated as the sum of all distances divided by the number of relocated insects. The maximum 

distance was measured as the furthest distance of an individual in each arena. Proportion 

emigrated was calculated as the number of individuals that left the first patch (length = 5 cm) 

divided by the number of recovered beetles. Lastly, diffusion was calculated as 1 divided by the 

slope of the linear regression with x as distance2 and y as the natural log of the number of 

recaptures at each distance (Kareiva 1982).  

 

Density-mediated emigration  

The effect of selection line on the propensity to disperse was also determined by the 

proportion of beetles emigrating from populations of different density using the beetles from the 

6th generation lines. A smaller 5 cm wide x 15 cm long rectangular prism arena was created with 

one end closed and the other open to allow for emigrants to fall into a petri dish, simulating an 

open landscape (or absorbing boundary). A 5 x 5 x 1 cm (5 g of flour) patch was located at one 

end of the arena followed by 10 x 5 x 1 cm of whole wheat grain (15 g) that represented the 

matrix. The insects could move back and forth within the arena, but dispersal past the distal edge 

of the matrix resulted in permanent emigration from the system.  

Three weeks prior to the experiment, beetles within each selection line and the control 

were placed into 10 populations consisting of 100 beetles per 10 g flour to standardize 

competition and resource availability across selection lines. To assess the density-emigration 
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relationship, RFB and CFB males and females were randomly collected from selection line 

populations and released at densities of 1, 2, 5, 10, and 20 beetles per gram of mix with the 

highest density capped at the equilibrium density noted for red flour beetles (Park 1948). The 

insects were anesthetized with CO2, gently mixed into the patch area, and placed in the growth 

chamber for 1 hour. Beetles were deemed as emigrants if they were in either the matrix or petri 

dish. Proportion emigrated was calculated by dividing the number that had emigrated by the total 

number released in the arena. Four replicates for each treatment and species were conducted for a 

total of 88 emigration trials during generation 6. An additional 4 replicates were added from the 

generation 0 control density-emigration data to ascertain if the control line was affected by 

inadvertent evolutionary change.  

  

Fecundity 

Fecundity was defined as the number of offspring produced by a breeding pair of beetles 

that survived until adulthood (Davis and Landolt 2012). One virgin male and female beetle was 

placed in 10 g flour for 7 d and transferred to the growth chamber. On the 8th day, the beetles 

were removed, placed in fresh 10 g flour, and moved to the growth chamber for 24 hr. This was 

repeated 10x for each selection line and control of each species for a total of 440 fitness 

replicates. The eggs laid during the 24 hr period remained in the growth chamber for 35 d and 

the individuals reached the adult stage. The number of adults within each replicate was counted. 

Replicates containing no offspring were removed from the data as the lack of offspring could 

indicate a misidentification of parent sex.  
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Interspecific competition 

The competition coefficient was estimated through an interspecific competition 

assessment using the same methods as the density-emigration experiment but with a release of 25 

selection line RFB or CFB beetles and 25 control line beetles of the opposite species (e.g., 25 

DLCH RFB released with 25 T CFB). The proportion emigrated of the focal selection line beetles 

was calculated and compared to the releases of 25 and 50 beetles (5 and 10 beetles per gram 

flour). From this set of comparisons, interspecific competition was considered to be occurring if 

emigration of the focal selection line beetles was significantly greater in the two-species 

community than in release densities of 50 beetles. If the two treatments were not significantly 

different, the focal selection line beetles reacted to the other species similarly to their own 

conspecifics. It is possible that the focal selection line beetles would not react to the other species 

at all, which would be indicated by a significant difference between the two-species community 

and 50-beetle density and a lack of difference between to the 25 beetle density. 

 

Statistical analysis 

We tested for differences in net displacement, mean distance, proportion emigrated, 

diffusion, and fecundity between each selection line. For each response variable, a separate linear 

model was run with species, selection line, and species  selection line interaction as fixed 

effects. Net displacement and diffusion were analyzed using a general linear model (GLM) with 

a gamma distribution. Maximum distance, proportion emigrated, and fecundity were analyzed 

using a GLM with a Weibull distribution. Akaike information criteria corrected for small sample 

size (AICc) was used to select the best distribution model for the GLM analysis (Burnham et al. 

2011). As each response variable included a significant interaction between species and selection 
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line, the GLM was performed to test effects of selection lines within each species. Separate 

Tukey-Kramer HSD post-hoc analyses were performed to test for differences in each response 

variable between selection lines.  All analyses were performed in JMP Version 15 (SAS 

Institute).  

To investigate if the selection lines differed in their emigration responses to density, we 

tested the interaction between selection line and proportion emigrated using GLM with a normal 

distribution. Released population density was used as a continuous factor, with species as a fixed 

categorical factor. Initially, the GLM included an interaction term of release density  species, 

but this was dropped from the model as RFB and CFB differed in response to density (see 

Results), and the model was used to assess selection lines differences within species using JMP. 

Post-hoc analysis of the data was performed using Tukey-Kramer HSD. Additionally, for each 

selection line, we analyzed the relationship between density and emigration using a nested set of 

predictor variables (constant only, constant + density, constant + density + density2). AICc was 

used to select the best model to determine if the relationship was linear or quadratic. The model 

with the smallest AICc value was deemed best (Burnham et al. 2011).  

Lastly, to test differences in emigration between RFB and CFB single species populations 

of 25 and 50 insects and the two-species community, a GLM with a normal distribution was 

used. The model was run with a full factorial of selection line, species, and release treatment. 

The full interaction term of line  species   treatment did not significantly add to the model (p > 

0.05) and was dropped. GLM analysis was done again within selection line by species with 

Tukey HSD post-hoc analysis. All analyses were performed in JMP Version 15 (SAS Institute).  
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RESULTS 

Selection of DCF traits 

We found strong evidence that the selection for dispersal ability had a significant effect 

on the individual’s propensity to disperse for both RFB and CFB populations.  In post-hoc Tukey 

HSD pairwise comparisons, when compared to DL, RFB of the DH line displaced 1.3x further, 

were 6.3 times more likely to emigrate, and had 115% greater diffusion; however, the maximum 

distance was not different (Table 4.3, Fig. 4.2). The CFB in the DH line averaged 1.19 times 

further net displacement and 1.08 times further maximum distance when compared to DL and the 

lines were not different in diffusion nor the proportion emigrated (Table 4.3, Fig. 4.3). When 

assessing the density-emigration relationship, beetles of DH and DL lines did not significantly 

change in their proportion emigrating for both RFB and CFB lines, but DH was twice as likely to 

emigrate across densities as DL for RFB and 2.3 times more likely in CFB lines (Table 4.3, Fig. 

4.4). Lastly, fitness was not different between the dispersal lines for RFB but DH CFB had 1.3 

times more offspring that survived until the pupal stage than DL beetles (Table 4.3, Fig. 4.5).  

We did not find evidence that selection for competition alone (CH and CL) affected any 

dispersal variable (Table 4.3, Fig. 4.2 and 4.3). When assessing the density-emigration 

relationship, overall emigration did not significantly differ between the competition lines for 

either species, but beetles of the CL line emigrated at an increasing rate with density (+DDE). 

Fitness was not different between competition lines for either species (Table 4.3, Fig. 4.5).  

CFB in the FL line had 7% shorter maximum displacement and 2.3 times greater 

emigration than beetles in the FH line whereas RFB fitness selection lines did not differ in any 

dispersal variable. Although overall emigration did not differ between lines for either species, the 
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RFB in the FH line emigrated positively with density (Fig. 4.4). High fitness treatments produced 

1.68 times more offspring that survived till the pupal stage (Table 4.3, Fig. 4.5). 

 

Table 4.3. Summary table of posthoc pair-wise comparisons between the single-trait selection 

lines of dispersal propensity, competitive ability, and fitness. (D = dispersal, C = competition, F 

= fecundity, L = selection for low ability, H = selection for high ability). 
Selection 

Lines 
Species 

Net 

displacement 

Maximum 

displacement 
Emigration Diffusion 

Density-

emigration 
Fecundity 

DH – DL RFB 
t33=5.91, 

p<0.0001 

t33=0.08, 

p=0.10 

t33=7.49, 

p<0.0001 

t33=4.66, 

p=0.002 
p<0.0001 

t85=0.62, 

p=1.0 

CH – CL RFB 
t33=1.39, 
p=0.94 

t33=0.15, 
 p=1.0 

t33=1.39, 
p=0.94 

t33=0.98, 
p=1.0 

p=0.13 
t85=2.41, 
p=0.38 

FH – FL RFB 
t33=2.20, 

p=0.52 

t33=1.06, 

 p=0.99 

t33=2.45, 

p=0.37 

t33=0.37, 

p=1.0 
p=1.0 

t85=2.89, 

p=0.14 

DH – DL CFB 
t33=4.09, 

p=0.01 

t33=3.85, 

p=0.02 

t33=2.38, 

p=0.41 

t33=3.04, 

p=0.13 
p=0.0006 

t70=4.41, 

p=0.002 

CH – CL CFB 
t33=3.07, 

p=0.12 

t33=2.65, 

p=0.26 

t33=3.07, 

p=0.12 

t33=1.82, 

p=0.76 
p=0.99 

t70=1.83, 

p=0.76 

FH – FL CFB 
t33=1.17, 

p=0.98 

t33=3.92, 

 p=0.02 

t33=6.45, 

p=<0.0001 

t33=2.54, 

p=0.32 
p=0.63 

t70=7.10, 

p<0.0001 

 

Dispersal in the range core and front 

RFB from selection lines that represented the core had a lesser propensity to disperse than 

those in the range front as the core beetles displaced an average of 14% (t38 = 4.35, p < 0.0001) 

and maximum of 3% (t38 = 3.41, p = 0.002) shorter distances. Additionally, 60% fewer core 

beetles emigrated from the first patch (t38 = 4.31, p < 0.0001) and diffusion rate was decreased by 

8% (t38 = 4.05, p = 0.0002; Fig. 4.2). CFB from the range and core selection lines were also 

different in their propensity to disperse, but to a lesser degree than RFB. Compared to the CFB 

from the range front, the core beetles’ net displacement was 17% shorter (t38 = 6.06, p < 0.0001) 

with a 3% shorter maximum distance (t38 = 2.16, p = 0.04). CFB in the core were also 55% less 

likely to emigrate (t38 = 4.86, p < 0.0001), 5% less diffuse (t38 = 2.44, p = 0.02) than the beetles 

from range front lines (Fig. 4.3).  
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Figure 4.2. Dispersal of red flour beetle selection lines representing the core and front of a range. 

Least square means (±95% CI) shown. Symbols with different letters are significantly different 

from one another (p<0.05).  (T = control, D = dispersal, C = competition, F = fecundity, L = 

selection for low ability, H = selection for high ability). 
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Figure 4.3. Dispersal of confused flour beetle selection lines representing the core and front of a 

range. Least square means (±95% CI) shown. Symbols with different letters are significantly 

different from one another (p<0.05).  (T = control, D = dispersal, C = competition, F = fecundity, 

L = selection for low ability, H = selection for high ability). 

 

Of the five RFB selection lines representing the core, the DLCH line had the lowest 

propensity to disperse. Beetles of the DLCH line had an average 30% shorter net displacement 

than the control (t33 = 4.87, p = 0.001) and the CH and FL selected beetles whereas the other low 

dispersal lines did not significantly differ from the other core lines. All low dispersal lines had a 

significantly lower proportion of emigrants than the control (Fig. 4.2). DL (t33 = 4.89, p = 0.0009) 

and DLCL beetles (t33 = 3.71, p = 0.03) average only 47% of the emigration as the control beetles, 

but the proportion of DLCH beetles emigrated was 50% of that (DL compared to DLCH; t33 = 5.23, 
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p = 0.0004). The core lines did not differ in RFB diffusion nor maximum distance, except for 

DLCL and CH (t33 = 3.83, p=0.02). 

CFB core lines selected for low dispersal only differed between the proportion of DL and 

DLCL beetle emigrants with low competition limiting emigration by 44% (t33 = 43.72, p = 0.03). 

When compared to the control, high competition CH and DLCH lines had 8% (t33 = 4.89, p = 

0.001) and 6% (t33 = 3.8, p = 0.02) shorter maximum distances respectively. Low competition, 

DLCL, on the other hand, had a 57% lower proportion emigrated (t33 = 4.98, p = 0.001) and 19% 

shorter net displacement (t33 = 3.48, p = 0.05) than the control. Lastly, CFB FL had a lower 

proportion of emigrants compared to all other lines, with only 34% of the control (t33 = 7.51, p < 

0.0001; Fig. 4.3). 

The RFB lines representing the range front did not show strong evidence that a change in 

competition would change the beetle’s propensity to disperse (Fig. 4.2). Primarily, the beetles of 

the DHCL line had a 25% less of the proportion of emigrants than the other high dispersal lines 

(compared to DH: t33 = 2.45, p = 0.02). The dispersal propensity of the CFB range front lines was 

more affected by competition (Fig. 4.3). DHCL beetles displaced 1.13 times (t33 = 3.66, p = 0.03) 

further than DHCH selected beetles. Although DHCH was not significantly different from the DH 

and DHCL selected lines for the other dispersal traits, this high competition line was generally not 

significantly different from the other range front or range core lines for maximum distance and 

diffusion whereas the DH and DHCL were (Fig. 4.3).  
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Influence of selection on density mediated emigration  

Overall, RFB had a 1.64 times greater emigration than CFB (t < 0.001, Tukey adjusted 

DF = 432, p < 0.0001). When each species was modelled separately, there was an effect of 

selection line on emigration for both RFB (F11,228 = 11.5, p < 0.0001) and CFB (F11,228 = 6.8, p < 

0.0001). Changes in density-emigration relationships for each DCF line are likely due to trait 

selection as the control lines for both species did not differ in the lack of a density-emigration 

relationship (DIE) nor the proportion emigrating between the generation 0 and generation 6 (p = 

1.0 for both species). All density-emigration relationships were tested for non-linearity, but 

linear regressions were selected as best fitting the data for each selection line of both species 

(Appendix C).   

Emigration did not significantly change with increasing density for all selection lines 

representing the core (DIE; Fig. 4.3, Table 4.7). The RFB in the DL, DLCH, and CH lines 

emigrated 40-44% less than those in the control lines (F11,228 = 11.5, p < 0.0001). Emigration of 

CFB in the core lines did not significantly differ from the controls. 

The beetles representing the range front either emigrated at an increased rate with density 

(+DDE; RFB lines FH and CL ; CFB lines of CL, DHCL, and DHCH) or a change in emigration 

with density was rejected (DIE; Fig. 4.3, Table 4.6). RFB emigration was greater in the DH and 

DHCL lines than the other lines representing the range front, with twice the number of emigrants 

as beetles in the DHCH line (p < 0.0001 for both lines). Only DHCL was significantly greater (1.3 

times, p = 0.05) than the control lines. The beetles of the DH and DHCL also averaged 2.3 times 

greater number of emigrants than the DL, DLCH, and CH core lines. The CFB bred in the DH and 

DHCL also had the highest emigration rates, with 1.7 times the number of emigrants in the DHCL 

than DHCH although DH and DHCH lines were not significantly different. Additionally, similar to 
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the RFB, the DH and DHCL beetles averaged 2.3 times greater number of emigrants than the DL, 

DLCH, and CH core lines. Only the FH beetles’ emigration was significantly different (45% of the 

emigrants) from the controls (F11,228 = 6.83, p < 0.0001).  

 

 
Figure 4.4. Linear regression to test the density-emigration relationship for each selected line for 

both flour beetle species (left). Different colors represent lines selected for high competition 

(orange), low competition (green), and fecundity (purples). Dashed and dotted lines indicate high 

and low dispersal selection, respectively. Least square means (±95% CI) for overall emigration 

for each selection line of the red flour beetle (top, red) and the confused flour beetle (bottom, 

blue) are displayed (right). Symbols with different letters are significantly different from one 

another (p < 0.05).  (T = control, D = dispersal, C = competition, F = fecundity, L = selection for 

low ability, H = selection for high ability, 0 = first generation) 
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Table 4.7. Linear regression results for density-emigration relationships of the dispersal lines (T 

= control, D = dispersal, C = competition, F = fecundity, L = selection for low ability, H = 

selection for high ability). DIE under density-emigration relationship represents density-

independent.  
 Red flour beetle  Confused flour beetle 

 

Line F DF R2 p 
Density-

emigration  

 

F DF R2 p 

Density-

emigration 

relationship 

 T 0.01 1, 18 0.001 0.925 DIE  0.12 1, 18 0.006 0.73 DIE 

R
an

g
e 

co
re

 DL 2.6 1, 18 0.1 0.12 DIE  4.0 1, 18 0.18 0.06 DIE 

DLCL 0.2 1, 18 0.01 0.68 DIE  0.3 1, 18 0.01 0.61 DIE 

DLCH 4.1 1, 18 0.19 0.06 DIE  0.2 1, 18 0.01 0.7 DIE 

CH 3.3 1, 18 0.15 0.09 DIE  0.06 1, 18 0.003 0.81 DIE 

FL 1.7 1, 18 0.08 0.22 DIE  1.2 1, 18 0.06 0.29 DIE 

R
an

g
e 

fr
o

n
t 

DH 0.01 1, 18 0.001 0.91 DIE  1.9 1, 18 0.09 0.19 DIE 

DHCL 0 1, 18 0 0.999 DIE  17.0 1, 18 0.49 0.001 Positive 

DHCH 0.7 1, 18 0.04 0.43 DIE  5.7 1, 18 0.24 0.03 Positive 

CL 12.0 1, 18 0.37 0.003 Positive  14.6 1, 18 0.45 0.001 Positive 

FH 23.9 1, 18 0.57 0.001 Positive  0.1 1, 18 0.01 0.72 DIE 

 

Interspecific-mediated competition 

Within the full GLM, RFB had 1.5 times the number of emigrants as CFB (F45,218 = 6.8, p 

< 0.0001) but RFB emigration was not affected by the addition of CFB control line competitors 

(p = 0.96). The addition of RFB to the CFB population increased CFB emigration by 150% (p = 

0.0002). There was a significant effect of selection line  species (W10 = 2.1, p = 0.02) and 

selection line  treatment density (W20 = 2.9, p < 0.0001). With post-hoc comparisons assessing 

emigration within selection line for each species, the addition of a competing species to the 

release patch increased emigration rate by 3 times and 2.3 times for the CH lines of CFB (F2,9 = 

7.41, p = 0.02) and RFB (F2,9 = 26.92, p = 0.0002), respectively, when compared to single-

species releases (Fig. 4.5). The CFB FH line also had 2.2 times greater emigration when placed 

with the competing species than when released in densities of 50 (F2,9 = 5.4, p = 0.03). The 

proportion emigrating was not significantly affected by the addition of the other species for all 

other selection lines.  
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Figure 4.4. The change in emigration with a competing species for selection lines representing 

the core and front of an expanding range. Mean (±SE) proportion emigrated for each selection 

line when placed in population densities of 25 (light grey) and 50 (black) beetles or 2-species 

community consisting of 25 individuals of each species (green) is shown. Comparisons in which 

emigration was significantly different (p < 0.05) between interspecific competition treatments 

and release densities of 50 are indicated with (*). (T = control, D = dispersal, C = competition, F 

= fecundity, L = selection for low ability, H = selection for high ability).  

 

Influence of selection on fitness 

Beetle fecundity was significantly impacted by the selection process and different 

between the two species (W10 = 28.05, p = 0.002). Regardless of selection line, RFB had 108% 

higher fitness than CFB (t155 = -3.17, p = 0.001). Additionally, in post-hoc tests within each 

species, the CFB selection lines HF, CL, DH, and DHCL, all of which represent the range front, 

had significantly higher fitness than the range core lines FL, DLCH, and DL (W = 135.6, Tukey-

Kramer adjusted DF = 70; p < 0.0001). RFB selection lines also differed (W = 31.25, Tukey-

Kramer adjusted DF = 85, p = 0.0005) revealed 138% higher fitness in the FH line compared to 
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the control (p = 0.006) and DHCH (p = 0.03; Fig. 4.4). There were no other detected differences 

for RFB lines.  

 

 
Figure 4.5. Fitness as measured by survival of offspring to the pupal stage. Least square means 

(±95% CI) for fitness for each selection line of red flour beetle (top, red) and confused flour 

beetle (bottom, blue) are shown. Symbols with different letters are significantly different from 

one another (p<0.05). (T = control, D = dispersal, C = competition, F = fecundity, L = selection 

for low ability, H = selection for high ability). 

 

DISCUSSION 

Heritability of DCF traits: DL vs DH , CL vs CH , FL vs HF  

The selection lines for dispersal ability created divergent dispersal behaviors within six 

generations, a time line that reflects similar range experiments with RFB (Szucs et al. 2017; 

Weiss-Lehman et al. 2017). Dispersal is commonly a heritable trait (e.g., Donohue et al. 2005; 

Phillips et al. 2006; Roff 2007) that may be morphological (e.g, Arnold et al. 2017; Roff 1986; 

Simmons and Thomas 2004; Wheelwright 1993), behavioral , or a suite of dispersal syndromes 

(Clobert et al. 2009; Hudina et al. 2014; Sih et al. 2012).  
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Selecting for low fecundity significantly decreased the number of offspring that survived 

until pupation by 40% between CFB FH and FL lines. Fecundity is a heritable trait for some 

species (e.g., Long et al. 2009; Quezada-Garcia and Bauce 2014; Sgro and Hoffmann 1998). 

Alternatively, changes in fecundity can be caused by another heritable trait relating to fitness, 

such as body size (e.g., Davis and Landolt 2012; Einum and Fleming 2000) and age (e.g., Bock 

et al. 2019; Lansing 1942), or be determined by the health of the mother (e.g,. Benton et al. 2008; 

Bock et al. 2019). Although environmental effects are possible, the 10 g of flour contained only 

one day’s worth of eggs (an expected average of 12-16 for RFB and 7-12 eggs for CFB) and 

competition should have been minimally different between the lines. Despite these possible 

extrinsic variables in the system, the survival component of our definition of fecundity reflects 

realized population recruitment to future generations (Shaw et al. 2008).  

 For the competition-selected lines, we standardized the environments only in the pupal 

and adult stages across all lines by isolating individuals to provide adults with equal resources 

and ensure use of virgins in the experiments. Thus, differences in DCF traits between high and 

low competitors, which matured in environments with 10-fold difference in mother density, are 

confounded by both genetics as well as environmental differences in resource availability, 

cannibalism rate, and crowded conditions. Carry-over effects of environmental conditions during 

development could have changed the phenotypes of the adults that matured in these different 

competition conditions (Hamel et al. 2009; Mousseau and Fox 1998). In an experiment by Van 

Allen and Rudolf (2013), CFB populations raised in poor quality versus high quality 

environments displayed carry-over effects including slower development time (by ten days), a 

3% difference in body weight, but similar survivorship. These effects persisted over generational 

time, even when offspring transitioned from a low quality to a high quality environment (Van 
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Allen and Rudolf 2013). Although their different environments were created using a preferred 

versus a nutrient-lacking food source, the influence of resource limitation due to overcrowding 

during the larval stage is similar. Extrinsic variables are likely a large contributing factor of 

differences within DCF traits seen within our competition-selected lines, including a low ability 

to emigrate and disperse, even at high densities. However, as the purpose of these experiments 

was to determine if selection pressure affects DCF traits in populations and not to determine the 

heritability of these traits, the impact of environmental variation does not limit our interpretation 

of the data but instead reflects population dynamics.  

 

Selection of traits in the range core: DL , DLCH , DLCL , CH , FL  

The selection of traits in the core and the range front were different when comparing the 

range front and core. Within comparisons of the core lines, there are a few key population 

responses that may influence range expansion: (1) The two species of beetle, although similar in 

niche, differ in response to selection pressure with dispersal limited in RFB high competition 

lines and CFB low competition lines. (2) Low fecundity can reduce emigration from a core but 

promote range expansion and high competition (DLCH) selection can reduce fecundity. (3) High 

competition in the core CH and DLCH lines can further limit emigration and displacement, but the 

addition of a competitor promotes emigration.  

Different species react differently to selection pressures within an expanding range. For 

RFB, high competition within the core populations is likely to slow down range expansion 

speeds as fewer individuals emigrate, despite density, and disperse shorter distances. This 

decrease may be due to the RFB overall having a higher dispersal propensity, which has been 

noted in other studies (e.g., Hawkin et al. 2013). This dispersal-competition tradeoff has long 
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been proposed (Simmons and Thomas 2004; Strona 2015) and is evident in various organisms 

(e.g., De Meester et al. 2015; Livingston et al. 2012) and often changes in fecundity are a 

response of this interaction. 

Although fecundity is expected to increase within the range front populations, this 

increase is primarily a response to low competition in the environment (e.g., Masson et al. 2018)  

and not necessarily the dispersal ability itself (Svenning et al. 2014). Dispersal and fecundity 

have been described as having a negative tradeoff due to the energetic investment in dispersal-

related traits (e.g., Stirling et al. 2001; Thompson et al. 2011; Weigang and Kisdi 2015) and the 

costs of dispersing through a hostile environment (Bowler and Benton 2005; Ronce 2007). Low 

fecundity may promote dispersal distance as, in the system, energy is not used for competition 

(<5 beetles per g flour), but the beetles are placed in a more competitive environment (10 beetles 

per g flour). This increase in emigration at higher densities was also noted in our low 

competition lines.  

Highly dense populations can adversely affect the fecundity of adults by increasing 

mortality of the offspring through competition (e.g., Huang et al. 2015) or cannibalistic 

behaviors. Alternatively, low fecundity can be the result of per-capita provisioning of offspring 

(Beckerman et al. 2006), in which females produce fewer offspring but of greater quality, i.e., 

express K-selected traits (e.g., Henery and Westoby 2001; Muller-Landau et al. 2008). This 

fecundity tradeoff may not directly affect the parents, particularly in populations with discrete 

generations, but it may increase the offspring’s ability to tolerate variable environmental 

conditions, compete with conspecifics, and coexist or exclude a competing species (Muller-

Landau 2010).  
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The introduction of the competing species to each of the lines only significantly displaced 

individuals belonging to the CH lines of both species, suggesting that high competition selected 

lines were not selected to be superior competitors, but individuals were of poor quality, 

potentially due to resource limitations (Van Allen and Bhavsar 2014). However, as the low 

fecundity in high competition selected lines suggest offspring provisioning, and thus an increase 

in competitive ability may be reached if the population persists over generations. However, 

interspecific competition between species that are more and less competitive can lead to local 

exclusion of the inferior competitor (Cantrell et al. 2007; Luck and Podoler 1985). The dispersal 

of the inferior competitor species can promote regional coexistence (e.g., Chesson and Warner 

1981; Livingston et al. 2012) as individuals can move to another vacant patch and become a 

‘fugitive species’ (Mouquet et al. 2005). Consequently, range expansion may accelerate for the 

inferior competitor (Holt 2005), which, as our data suggests, may have stable ranges or slow-

moving ranges. 

Within invasion biology, a resident species that is a superior competitor can prevent an 

invading species from expanding its range ; however, even inferior competitors can slow down 

the invasion (Hastings et al. 2005; Svenning et al. 2014) through founder effects in which the 

resident species first colonized the area and filled available niche space (e.g., Jezkova 2020; 

Okubo et al. 1989; van der Knaap et al. 2005; Waters et al. 2013). If the invading species has 

+DDE, which was the case in half of our range front lines, the rate of spread of the invader is 

even further reduced (French and Travis 2001). Species that are +DDE are less likely to emigrate 

at low densities and colonizers often remain in the patch until high enough densities are reached 

(Amarasekare 2004a; Matthysen 2012). As interspecific competition can decrease population 

growth rates (e.g., Martin and Martin 2001) the lag time between dispersal events will be larger. 
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If the degree to which resident is inferior changes between populations, as is suggested by our 

data, the competitive interaction is likely to change across the range, which can greatly influence 

the speed of invasive range expansion (Svenning et al. 2014). Models for expanding ranges of 

invasive species as well as those expanding their native ranges need to include both intra- and 

inter- specific interaction to better predict dispersal outcomes. 

 

Selection of traits in the range front: DH , DHCL , DHCH , CL , FH 

The selection of different DCF traits in the range suggest that different range pressures 

affect dispersal in three different ways: (1) high competition in the DHCH can reduce dispersal 

propensity enough to not be significantly different from the beetles in the core, particularly 

within high densities. (2) Selection for low competition did not change displacement, however, 

beetles had +DDE (3) FH RFB had high emigration rates at high densities, resulting in a +DDE 

response, and with a competing species. 

As expected, lines selected for high dispersal had an overall greater propensity to disperse 

than their low dispersing counterparts (Table 4.4). This increase is  likely due to spatial sorting 

promoting the occurrence of few high dispersers at the range front, which in turn, increases the 

range expansion speed over generational time (Fronhofer and Altermatt 2015; Travis et al. 

2009). In the DHCH line, the beetles selected for high dispersal and are spatially sorted from the 

low dispersers using the same methods as the other dispersal selection lines, but the additional 

high competition limits dispersal in two primary ways. The first is that additional parents used to 

breed each replicate for the DHCH line (10 beetles with 6 replicate populations versus 5 beetles 

with 8 replicate populations) than the other two dispersal lines. A larger number of colonizers 

would increase genetic variation within the range populations and reduced the evolutionary 
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potential for high dispersal (Van Petegem et al. 2018) by limiting genetic drift inherent in 

founder effects. Secondly, the additional competitors in the natal habitat could negatively impact 

the health and dispersal ability of the DHCH beetles, as noted with the DHCL beetles, and, as a 

consequence, displacement and emigration may be reduced.   

In spatiotemporal variable environments, +DDE is predicted to decrease the probability 

of local extinction (Amarasekare 2004b) as the mean per capita fitness is increased (Hovestadt et 

al. 2010) through promoted population growth in low densities and avoidance of intraspecific 

competition at high densities (Hamilton and May 1977; Handley and Perrin 2007). Density-

independence, however, promotes emigration at the same rate despite conspecific competition or 

beneficial aggregation.  

Interestingly, several lines representing the range front populations had +DDE (Table 4.7, 

Fig. 4.3), a form that theoretically reduces range expansion speeds as individuals in newly 

colonized habitats are unlikely to move forward in the range until population densities increase, 

creating a time lag between dispersal events (Altwegg et al. 2013). Many organisms settle in a 

range according to the ideal-free distribution model as individuals choose to settle in areas that 

maximize their fitness (Fretwell and Lucas 1970), which, for non-gregarious species, is away 

from competition (Altwegg et al. 2013; Matthysen 2005). Three of the five +DDE forms were 

low competition selected and the beetles may be emigrating from novel levels of high 

competition relative to their natal environment. As both CL lines and neither DH lines are +DDE, 

competition is likely driving the relationship. These populations are theoretically at a greater risk 

in disturbed environments as +DDE can additionally slow species’ spatial response to climate 

change, particularly for populations with slow growing populations (Best et al. 2007; Urban et al. 

2012) as the lag time is increased between dispersal events. CFB populations are more likely to 
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be impacted by disturbance as the species produces fewer offspring and has a slower population 

growth rate. Additionally, three of the four +DDE forms within competition-selected lines were 

CFB. 

In spatiotemporal variable environments, +DDE is predicted to decrease the probability 

of local extinction (Amarasekare 2004b) as the mean per capita fitness is increased (Hovestadt et 

al. 2010) through promoted population growth in low densities and avoidance of intraspecific 

competition at high densities (Hamilton and May 1977; Handley and Perrin 2007). However, at 

the range front, selection should favor moderate rates of dispersal at densities well below the 

equilibrium density (Travis et al. 2009), as seen in our high dispersal selection lines, except 

DHCH. This suggests that high dispersal selects for behavior that hastens range expansion 

whereas low competition in natal habitat promotes local population persistence.  

Unexpectedly, RFB FH lines also emigrated positively with density with the highest rates 

of emigration at the greatest densities of all lines (Fig. 4.3). FH individuals mature in densities 

similar to those in the control line, which was DIE and did not change across generational time, 

thus the difference in the density-emigration form is unlikely to escape from conspecific 

competition. One main difference between the FH lines and the other lines, however, is the 

probability of high kin-competition as only the offspring of the 2-3 highest fecund females were 

used each generation (compared to 20 females for dispersal selection and generally 12 for low 

fecundity selection). These offspring were randomized for experiments, but the chances of 

competing directly with close relatives was high. In populations with high levels of kin-

competition, emigration is often increased (Van Petegem et al. 2018) as individuals leave to 

reduce local resource competition (Bach et al. 2006; Ronce et al. 2000) and spread their genes in 

surrounding populations or colonize empty habitats (Hamilton 1964). This strategy maximizes 
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inclusive fitness of the population (Hamilton and May 1977) and promotes range expansion 

speeds through the increase in emigration (Van Petegem et al. 2018). Although this was not the 

original intent of the HF line, the high levels of genetic-relatedness is representative of a range 

front population and has been found in many range-expanding species (Hastings et al 2005; Lee 

2002; Dingle 1978). 

Dispersal and competition theoretically trade-off with one another as dispersal is often 

costly with long stretches of inhabitable matrix, interspecific competitors, environmental 

hazards, and predators (Fronhofer and Altermatt 2015) and the decrease in competitive ability 

has been attributed to traversing these harsh environments (Bowler and Benton 2005; Ronce 

2007). These landscape variables, however, were not included in our standardized-short matrix 

landscapes, thus the risks of dispersing were weaker for our experiment, but our results clearly 

show that even intraspecific- and kin-competition can greatly reduce the ability for individuals to 

disperse at the range front.  

 

CONCLUSIONS 

Here, we took the novel approach of applying concurrent selection pressures of dispersal 

and competition onto populations to represent the interacting tradeoffs that occur either in the 

range core or range front of an expanding population. We compared these population responses 

to the customarily used single-trait selection tradeoffs between competitive and dispersal abilities 

and incorporated fecundity selection, which is often measured only as a reaction to other trait 

selection. As the response to tradeoffs is often system-dependent, we used two species that have 

high niche overlap but vary in their normal responses to competition to test the differences 
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between species. Lastly, we assessed how applying different selection pressures changes an 

individual’s reaction to a competing species.  

This research addresses many questions that have not been fully addressed using an 

empirical system. Chiefly, our results suggest that the propensity to disperse — and thus range 

expansion speed — is influenced by intraspecific competition in both the range front and core. 

High competition generally limits emigration and displacement, whereas very low competition 

may increase the dispersal distance but may reduce the propensity to emigrate at low densities. In 

this way, selection for competition within dispersing populations may slow down expansion 

speed. This change is slight but enough that DCF traits among the core, front, and control 

changed. This is expected by competition models (e.g., Svenning et al. 2014) but has yet to be 

shown through direct selection in an empirical experiment.  

We additionally tested the tradeoffs between the propensity to disperse, competitive 

ability, and fecundity by placing selection pressure on each trait. This has been done in separate 

experiments but not coincidingly using the same parental populations. Competition on its own 

did not change the propensity to disperse over generational time. Although fecundity is often 

linked with competitive and dispersal abilities, selection for or against fecundity did not change 

dispersal propensity, but kin competition may have affected emigration.   

Additional research investigating the effects of multiple selected traits is needed. The 

pairwise interactions customarily used in range expansion research can provide much 

information on metapopulation dynamics, but populations are influenced by multiple variables 

that may have opposing tradeoffs. This may have great impact on the range expansion speed of  
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dynamic populations, and models forecasting the movement of invasive species or populations 

escaping from disturbance need to include empirical data from multiple experiments such as this 

one.  
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CHAPTER 5. 

CONCLUSIONS 
 

In my dissertation, I examined how habitat fragmentation and range margins effect 

dispersal and interactions between intra- and inter-specific competitors. My research includes 

different spatio-temporal scales ranging from short-term individual movement within patch to 

the evolution of multiple traits in landscapes. Additionally, my work details the history of 

dispersal research through a systematic literature review and looks to the future by using novel 

study organisms, incorporating original experimental design, and suggesting methods that would 

further research. This dissertation has advanced our understanding of population dynamics, 

species invasions, and conservation biology. 

 

Chapter 2: Historical perspectives on emigration and where research should go next 

In my second chapter, I addressed the limited ecological view that the density-emigration 

relationship is either density-independent (Hanski and Gilpin 1991; Levins 1974; Pacala and 

Roughgarden 1982) or positive (Amarasekare 2004; Bowler and Benton 2005; Matthysen 2012) 

as many models do not consider the possibility of negative density-dependent emigration (DDE) 

or nonlinear forms such as u-shaped or hump-shaped.  

I hypothesized that empirical studies of DDE would also follow this trend with the 

majority of relationships being +DDE or DIE. This hypothesis was not rejected as most of the 

145 studies included systems that had + DDE (36%) and DIE (30%). Unexpectedly, the 

alternative forms of -DDE (25%) and the nonlinear forms of uDDE and hDDE (cumulative 9%) 

were included in more studies than originally anticipated. The number of nonlinear forms was 

greatly increased by reanalyzing the data for nonlinear relationships, which added 4 cases.  



104 
 

However, as many studies use methods that preclude the detection of nonlinear DDE, it is 

likely that they are more common than our literature review has revealed. Importantly, in this 

chapter I provide evidence for the benefit of using methods that focus on rigorous regression-

based experimental designs that incorporate a greater number of densities that range from very 

low to above carrying capacity. The use of statistics and methods that improve the chances of 

detecting different forms is important as our models suggest that different DDE forms can cause 

complex within-patch dynamics that are not observed with DIE or +DDE, for which our model 

predicts constant population persistence, which is not universally found in nature (e.g., Turchin 

and Taylor 1992).  

As the 5 different forms of DDE have not been theoretically compared for population 

dynamic changes, we developed a reaction-diffusion model to illustrate how different forms of 

DDE can affect patch-level populations in different patch sizes and matrix hostilities. I 

hypothesized that the different DDE forms would have dynamic population persistence 

consequences, which was the case for -DDE, uDDE, and hDDE. The Allee effect regime in the -

DDE and uDDE allows populations to persist in smaller patches formed from a newly 

fragmented larger patch, which may be why anthropogenic fragmentation is one of the leading 

causes of demographic Allee effects found in populations (Courchamp et al. 2008). Similarly, the 

negative slope of -DDE and uDDE changes the reaction norm and produces bi-stability regimes 

that allows the organism to colonize and persist at a much lower density level. Both Allee effects 

and alternative stable states are difficult to detect in nature and have limited empirical support; 

however, our model suggests that these population dynamics are a potential result of 

fragmentation, but only with populations that have alternative DDE forms.  
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Chapter 3: A novel system that has interesting aggregative behaviors that results in uDDE 

In my third chapter, I address some of the research gaps revealed in my literature review, 

specifically investigating individual movement and emigration within small, fragmented patches. 

An individual’s response to fragmentation is often the least understood regarding the biology of a 

species (Evans et al., 2018; Hooten et al., 2017), but understanding individual behavior is 

important as individual decisions can influence emigration, which in turn changes population and 

metapopulation dynamics. In this chapter, my study system included the blissid bug Ischnodemus 

conicus, which inhabits Spartina alterniflora patches on the coast. To our knowledge, there is no 

direct manipulation study of I. conicus and studies using congeners are primarily concerned with 

the host plant and not the behavior of the insect (e.g., Johnson and Knapp 1996). Nothing is 

known concerning its dispersal behavior; thus, this study provides a novel entomological system 

that can be used to further study dispersal responses to disturbed environments. However, this 

study is not system dependent as the insect and habitat reflect landscapes used in many 

theoretical models of a standard patch (monoculture patches of Spartina alterniflora) surrounded 

by a simple, but harsh matrix (bare sand) and bug’s responses to fragmentation can be 

generalized to other populations with similar life history traits to I. conicus. As fragmentation is 

a common disturbance in habitats, understanding how an individual reacts to the edge of a patch 

as well as to conspecifics is needed. 

As predicted, I. falicus displayed behavioral responses that are indicative of a gregarious 

species, such as non-linear uDDE and maintaining a clumped distribution over time. 

Additionally, as predicted, the emigration of individuals into a harsh, sand matrix was low, and 

individuals did not remain. This would suggest that Ischnodemus conicus populations would be 

able to persist in large populations, due to their gregarious nature (Bowler and Benton 2005; Kim 
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et al. 2009; Matthysen 2012). Long-distance dispersal would be limited by the brachypterous 

population majority and the potential use of aggregating pheromones (e.g., Bartelt et al., 2008; 

Stevenson et al., 2017). The harsh boundary and hostile nature of the mud matrix further impedes 

emigration from the habitat as the edge is not very permeable to individuals, who instead move 

along the boundary and aggregate (e.g., Desrochers et al. 2003).  

 

Chapter 4: A systematic approach to analyzing range expansion dynamics 

In my fourth chapter, I examined the eco-evo dynamics of an expanding range using the 

model organisms Tribolium confusum and T. castaneum, and applied selection pressure to ten 

different populations of each species. These populations reflected different selection events that 

could theoretically occur in the core or the range front. This study encompasses four main 

additions to the work of range expansion. The first is that I selected for every DCF (dispersal, 

competition, fecundity) trait and measured the population’s response rather than focusing on one 

trait at a time (e.g., Arnold et al., 2017). Secondly, I placed selection pressures for both 

competitive ability and the propensity to disperse in a factorial design to account for different 

population densities than expected from the dense core and space range front, which would fit 

the contrasting models of Fronhofer and Altermatt (2015) and Benton et al. (2008). Lastly, I 

measured the response of each selection line to a competitor, which would reflect both the focal 

specie’s expansion into a new habitat that is inhabited by a competitor as well as a competition 

species invading into the range core population. This systematic approach incorporates several 

studies of range expansion into one experiment and suggests the interplay of several range 

expansion responses including founder effects, kin-competition, genetic drift, r- and K-selection, 

emigration, and spatial sorting of phenotypes.  
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In this study, I first predicted that the DCF traits would be heritable and thus could be 

evolutionarily changed. The selection for dispersal supported this hypothesis as there was 

divergence in dispersal behavior, which is common in many species (e.g., Donohue et al. 2005; 

Phillips et al. 2006; Roff 2007) as a suite of phenotypes, called dispersal syndromes, often affect 

dispersal ability (Clobert et al. 2009; Hudina et al. 2014; Sih et al. 2012). Fecundity significantly 

decreased the number of offspring that survived until pupation by 40% between CFB FH and FL 

lines, but not for RFB, which suggests that fecundity may be selected for in one species (e.g., 

Long et al. 2009; Quezada-Garcia and Bauce 2014; Sgro and Hoffmann 1998). Alternatively, 

changes in fecundity can be caused by another heritable trait relating to fitness (e.g., Davis and 

Landolt 2012; Lansing 1942), the health of the mother (e.g,. Benton et al. 2008; Bock et al. 

2019). Assessing competition trait heritability in this study was not possible as results are 

confounded by both genetics as well as environmental differences in resource availability, 

cannibalism rate, and crowded conditions that could have carried over into the new environment 

(Hamel et al. 2009; Mousseau and Fox 1988; Van Allen and Rudolf 2013).  

For populations representing both the core and front, I expected high competition 

selection to limit the dispersal of the DHCH and DLCH lines and high dispersal to limit the 

competition of DHCH and DHCL lines as proposed in the theoretical work of Svenning et a. 

(2014). This happened with dispersal ability, but not to the extent that I predicted. Except for a 

few dispersal responses, selection for traits concurrently promoted differences, but to the control 

and opposite selection group (the core or the front). Differences within the core and front were 

limited; however, these small changes can still have great impact on range expansion speed (e.g., 

Weiss-Lehman et al. 2017). Additionally, the density-emigration response changed between lines 

with five of the ten range front lines having a +DDE whereas all other lines were DIE. As 
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described in my second chapter, both of these DDE forms promote constant population 

persistence in patches larger than the minimum patch size (Harman et al. 2020); however, the 

DIE form is theoretically promotes range expansion more than +DDE (Amarasekare 2004) as 

+DDE populations experience a lag time in dispersal events while waiting for densities to 

increase (Altwegg et al. 2013). Unexpectedly, RFB FH lines also emigrated positively with 

density with the highest rates of emigration at the greatest densities of all lines. As this 

population was founded by few individuals each generation (6-8 pairs compared to 20), this 

suggest that kin-competition was a byproduct of the selection process and emigration behavior is 

preferred to reduce local resource competition (Bach et al. 2006; Ronce et al. 2000). 

Lastly, for this chapter, I hypothesized that the high competition lines would better 

compete against the other species, although to a lesser extent if coincidently selecting for high 

dispersal. This, however, was not the case as the high competitor lines emigrated with a 2.2-2.3x 

greater proportion with the competitor than with conspecifics alone. This suggests that the 

selection process did not produce a high competing line, at least in the definition of competitive 

exclusion (Cantrell et a. 2007; Luck and Podoler 1985). Inferior competitive and dispersal ability 

has been noted in other studies pertaining to habitat quality (e.g., Van Allen and Bhavsar 2014). 

 

Conclusions and future research 

Dispersal events proceed through a series of stages that start with an individual’s decision 

to move. This movement can be impacted by the presence of conspecifics (chapter 2), the 

landscape (chapter 3), and selection pressure (chapter 4) and may influence population 

persistence (chapter 2), the movement decisions of others (chapter 3), and range expansion 

(chapter 4). Dispersal is a dynamic process and the use of better methods that measure a range of 
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variables (chapter 2), different study organisms that give a broader picture of dispersal 

consequences (chapter 3), and systematic approaches that take into account several facets of 

dispersal at once (chapter 4) will greatly advance our understanding of population dynamics, 

species invasions, and conservation biology, just as this dissertation has.  

In the near future, I plan to continue my research on dispersal and competition in 

fragmented landscapes and focus on interspecific competition and range expansion across a 

landscape. This field of research is very interesting to me and much headway is needed for 

empirical work to catch up with theoretical.  
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APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 2. 

Table A1. List of case studies used in the empirical literature review.  Source of data, species 

identity and taxonomic group, type of study (obs = observational, exp = experimental), number 

and range of densities (ratio of highest to lowest density) and form of density-dependent 

emigration reported. Experimental studies marked as exp* are those in which individuals exiting 

the patch were removed from the system, precluding them from returning to the patch. The 

possible DDE relationships include density-independent (DIE), positive (+DDE), negative (-

DDE), u-shaped (uDDE), and hump-shaped (hDDE). Table continues over the next several 

pages.  

Article 
Species 

Scientific Name 

Species 

Type 

Research 

Type 

DDE Form 

(Original 
Form)  

# of 

Densities 

Density 

Range 

Aars and Ims 

2000 

Microtus 

oeconomus 
mammal exp +DDE 2 3.6 

Albrectsen 
and 

Nachman 

2001 

Paroxyna 

plantaginis 
insect exp +DDE 3 - 

Allen and 

Thompson 

2010 

Ischnura 
pumilio 

insect obs -DDE - - 

Alonso et al 

1999 
Otis tarda bird obs -DDE - - 

Altwegg et 

al 2014 

Philetairus 

socius 
insect obs -DDE 17 20.0 

Altwegg et 

al 2014 

Philetairus 

socius 
bird obs uDDE 17 20.0 

Andreassen 
and Ims 

2001 

Microtus 

oeconomus 
mammal exp -DDE 20 25.0 

Azandeme 
Hounnmalon 

et al 2014 

Tetranychus 

evansi 
insect exp +DDE 4 80.0 

Azandeme 

Hounnmalon 
et al 2014 

Tetranychus 

urticae 
insect exp DIE 4 80.0 

Baguette et 

al 2011 
Boloria eunomia insect exp -DDE - - 

Baines et al 

2014 

Notonecta 

undulata 
insect exp uDDE(+DDE) 3 3.2 

Bateman et 

al 2012 

Suricata 

suricatta 
mammal obs +DDE 24 9.0 

Bengtsson et 

al 1994 

Onychiurus 

armatus 
insect exp +DDE 2 3.0 

 

(Table cont’d.)  
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Article 
Species 

Scientific Name 

Species 

Type 

Research 

Type 

DDE Form 
(Original 

Form)  

# of 

Densities 

Density 

Range 

Bengtsson et 

al 2002 

Onychiurus 

armatus 
insect exp +DDE 3 81.0 

Berggren 

and Forsman 

2012 

Tetrix subulata insect exp DIE 2 1.4 

Bret et al 
2016 

Cornu aspersum invertebrate exp +DDE 3 4.0 

Brooke 2010 
Brueelia 

merulensis 
insect obs DIE - - 

Broseth et al 

1998 

Lagopus 

lagopus 
bird obs +DDE 2 2.2 

Byrom 2002 Mustela furo mammal obs DIE 2 - 

Callihan et al 

2014 
Morone saxatilis fish exp +DDE - - 

Chaput-

Bardy et al 

2010 

Calopteryx 
splendens 

insect obs -DDE - 3.4 

Chatelain 

and Mathieu 

2017 

Eisenia andrei insect exp +DDE 4 30.0 

Chatelain 

and Mathieu 

2017 

Eisenia fetida insect exp hDDE(DIE) 4 30.0 

Chatelain 
and Mathieu 

2017 

Lumbricus 

rubellus 
insect exp hDDE(-DDE) 4 30.0 

Cote et al 
2011 

Gambusia 
affinis 

fish exp* DIE 2 2.9 

Crisp 1993 Salmo trutta fish obs uDDE(+DDE) 21 20.0 

Dahirel et al 

2014 
Cornu aspersum invertebrate exp DIE 2 2.0 

Day et al 
2004 

Haliotis rubra invertebrate exp +DDE 2 5.0 

DeMeester 

and Bonte 
2010 

Erigone atra invertebrate exp +DDE 15 15.0 

Denno et al 

2001 
Toya venilia insect obs +DDE 10 70.0 

Derosier et 
al 2007 

Petromyzon 
marinus 

fish exp DIE 3 6.0 

Derosier et 

al 2007 

Petromyzon 

marinus 
fish exp -DDE 3 6.0 

Doak 2000 Itame andersoni insect exp +DDE 3 5.0 

 

(Table cont’d.)  



112 
 

 

Article 

Species 

Scientific Name 

Species 

Type 

Research 

Type 

DDE Form 
(Original 

Form)  

# of 

Densities 

Density 

Range 

Donaldson et 

al 2007 
Aphis glycines insect exp +DDE 13 101.0 

Drolet et al 

2013 

Corophium 

volutator 
invertebrate exp DIE 3 2.0 

Einum and 

Nislow 2005 
Salmo salar fish exp +DDE 10 1.6 

Einum and 

Nislow 2005 
Salmo salar fish exp -DDE 10 1.6 

Einum et al 
2006 

Salmo salar fish exp +DDE 9 1.7 

Elliott 2003 Baetis rhodani insect exp DIE 6 4.0 

Elliott 2003 
Ecdyonurus 

venosus 
insect exp DIE 6 4.0 

Elliott 2003 
Gammarus 

pulex 
invertebrate exp DIE 6 4.0 

Elliott 2003 
Hydropsyche 

siltalai 
insect exp DIE 6 4.0 

Elliott 2003 
Isoperla 

grammatica 
insect exp DIE 6 4.0 

Elliott 2003 
Perlodes 

microcephalus 
insect exp DIE 6 4.0 

Elliott 2003 
Potamophylax 

cingulatus 
insect exp DIE 6 4.0 

Elliott 2003 
Protonemura 

meyeri 
insect exp DIE 6 4.0 

Elliott 2003 
Rhithrogena 

semicolorata 
insect exp DIE 6 4.0 

Elliott 2003 
Rhyacophila 

dorsalis 
insect exp DIE 6 4.0 

Enfjail and 

Leimar 2005 
Melitaea cinxia insect exp +DDE 2 7.0 

Etherington 

et al 2003 

Callinectes 

sapidus 
invertebrate exp DIE 2 4.0 

Etherington 
et al 2003 

Callinectes 
sapidus 

invertebrate exp -DDE 2 4.0 

Fasola et al 

2002 
Egretta garzetta bird obs DIE 8 9.7 

Fattebert et 

al 2015 
Panthera pardus mammal obs uDDE 20 - 

Fattebert et 

al 2015 
Panthera pardus mammal obs -DDE 13 - 

Fonseca and 

Hart 1996 

Simulium 

vittatum 
insect exp* +DDE 15 15.0 

French and 
Travis 2001 

Anisopteromalus 
calandrae 

insect exp +DDE 3 10.0 

(Table cont’d.)  
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Article 

Species 

Scientific Name 

Species 

Type 

Research 

Type 

DDE Form 
(Original 

Form)  

# of 

Densities 

Density 

Range 

Fronhofer et 

al 2015 
Tetrahymena 

micro-

organism 
exp -DDE 5 10.0 

Hahne et al 

2011 
Microtus arvalis mammal exp +DDE 5 12.0 

Hammill et 

al 2015 

Paramecium 

aurelia 

micro-

organism 
exp +DDE 7 16.0 

Hammill et 

al 2015 

Paramecium 

aurelia 

micro-

organism 
exp -DDE 7 16.0 

Hauzy et al 
2007 

Dileptus sp. 
micro-

organism 
exp DIE 3 294.7 

Hauzy et al 

2007 

Tetrahymena 

pyriformis 

micro-

organism 
exp +DDE 3 4.0 

Hendrickx et 

al 2013 

Pterostichus 

vernalis 
insect exp -DDE 7 60.0 

Herzig 1995 
Trirhabda 

virgata 
insect exp +DDE 2 2.0 

Hibbard et al 
2004 

Diabrotica 

virgifera 

virgifera 

insect exp +DDE 5 32.0 

Hooft et al 

2008 

Mastomys 

natalensis 
mammal obs -DDE 8 3.5 

Huffeldt et al 
2012 

Tyto alba bird obs DIE - - 

Humphries 

2002 
Baetis rhodani insect exp DIE 8 14.0 

Ims and 
Andreassen 

2005 

Microtus 

oeconomus 
mammal obs -DDE 28 49.0 

Itonaga et al 
2011 

Ciconia ciconia bird obs +DDE 3 1.6 

Izraylevich 

and Gerson 

1995 

Hemisarcoptes 

coccophagus 
insect exp +DDE 5 12.0 

Jacob et al 

2016 

Tetrahymena 

thermophila 

micro-

organism 
exp hDDE 3 4.0 

Jacob et al 
2016 

Tetrahymena 
thermophila 

micro-
organism 

exp uDDE 3 4.0 

Johnson and 

Eggleston 
2010 

Callinectes 

sapidus 
invertebrate obs -DDE 2 12.0 

Kerans et al 

2000 

Hydropsyche 

slossonae 
insect exp* +DDE 3 8.0 

Keynan and 
Ridley 2016 

Turdoides 
squamiceps 

bird obs +DDE 25 8.5 

Kim et al 

2009 
Sula nebouxii bird obs uDDE 100 65.0 
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Article 

Species 

Scientific Name 

Species 

Type 

Research 

Type 

DDE Form 
(Original 

Form)  

# of 

Densities 

Density 

Range 

Kuefler e al 

2012 

Brachionus 

calyciflorus 

micro-

organism 
exp +DDE 22 30.0 

Lancaster et 

al 2011 
Baetis rhodani insect exp* DIE 7 20.0 

Le Galliard 

et al 2003 
Lacerta vivipara reptile exp* DIE 2 1.4 

Le Galliard 

et al 2003 
Lacerta vivipara reptile exp* +DDE 2 1.4 

Loe et al 
2009 

Cervus elaphus mammal obs DIE 5 4.0 

Loe et al 

2009 
Cervus elaphus mammal obs -DDE 5 4.0 

Lutz et al 

2015 

Odocoileus 

virginianus 
mammal obs hDDE(+DDE) 12 102.2 

Maag et al 

2018 

Suricata 

suricatta 
mammal obs uDDE 3 6.0 

Mabry 2014 
Peromyscus 

boylii 
mammal obs -DDE 2 1.4 

Manteuffel 
and 

Eiblmaier 

2010 

Sceloporus 

virgatus 
reptile exp* +DDE 2 3.0 

Martin et al 

2008 
Otis tarda bird obs -DDE 90 - 

Mathieu et al 

2010 

Aporrectodea 

icterica 
insect exp +DDE 3 3.3 

Mckellar et 

al 2015 

Setophaga 

ruticilla 
bird obs -DDE 7 3.6 

Meylan et al 
2007 

Lacerta vivipara reptile exp -DDE 2 - 

Michler et al 

2011 
Parus major bird exp DIE 3 - 

Midtgaard 
1999 

Harpalus 
rufipes 

insect exp* DIE 7 15.0 

Midtgaard 

1999 

Pterostichus 

niger 
insect exp* DIE 5 9.0 

Mishra et al 

2018 

Drosophila 

melanogaster 
insect exp -DDE 4 8.0 

Moksnes 
2004 

Carcinus 
maenas 

invertebrate exp uDDE(+DDE) 3 9.0 

Molina-

Morales et al 

2012 

Pica pica bird obs +DDE 33 7.5 

Morton et al 

2018 

Falco 

peregrinus 
bird obs -DDE 2 - 
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Article 

Species 

Scientific Name 

Species 

Type 

Research 

Type 

DDE Form 
(Original 

Form)  

# of 

Densities 

Density 

Range 

Newton 

2001 
Accipiter nisus bird obs DIE - - 

Nowicki and 

Vrabec 2011 

Maculinea 

nausithous 
insect obs +DDE 7 6.5 

Nowicki and 

Vrabec 2011 

Maculinea 

teleius 
insect obs +DDE 7 6.5 

Ost et al 

2011 

Somateria 

mollissima 
bird obs +DDE - 200.0 

Overholtzer-
McLeod 

2004 

Halichoeres 

garnoti 
fish exp DIE 11 3.0 

Paris et al 
2016 

Petroica 
traversi 

bird obs +DDE - 16.0 

Pasinelli and 

Walters 2002 

Picoides 

borealis 
bird obs +DDE 4 4.0 

Payne 1991 
Passerina 

cyanea 
bird obs DIE 4 4.0 

Pennekamp 

et al 2014 

Tetrahymena 

thermophila 

micro-

organism 
exp DIE 3 3.0 

Pennekamp 

et al 2014 

Tetrahymena 

thermophila 

micro-

organism 
exp -DDE 3 3.0 

Poniatowski 
and 

Fartmann 

2011 

Metrioptera 

brachyptera 
insect obs +DDE 16 16.0 

Powers and 
Peterson 

2000 

Argopecten 
irradians 

concentricus 

invertebrate exp hDDE(+DDE) 3 5.4 

Powers and 
Peterson 

2000 

Argopecten 
irradians 

concentricus 

invertebrate exp +DDE 3 5.4 

Randall et al 

2005 

Rhombomys 

opimus 
mammal obs -DDE 4 94.0 

Rasmussen 

and Belk 

2012 

Lepidomeda 
aliciae 

fish obs DIE 4 4.7 

Reyns and 

Eggleston 

2004 

Callinectes 
sapidus 

invertebrate obs +DDE 14 - 

Rhainds and 

Messing 

2005 

Aphis gossypii insect obs DIE 20 3.3 

Rhainds et al 
2002 

Metisa plana insect exp* +DDE 3 20.0 

Rhainds et al 

2005 

Frankliniella 

occidentalis 
insect exp* +DDE 2 - 
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Article 

Species 

Scientific Name 

Species 

Type 

Research 

Type 

DDE Form 
(Original 

Form)  

# of 

Densities 

Density 

Range 

Richardson 

et al 2010 

Notiomystis 

cincta 
bird obs -DDE - - 

Richardson 

et al 2010 

Notiomystis 

cincta 
bird obs +DDE - - 

De Roissart 

et al 2013 

Tetranychus 

urticae 
insect exp +DDE 13 6.57 

Ronnas et al 

2011 

Thaumetopoea 

pinivora 
insect obs DIE 2 3.33 

Rosenberg et 
al 1997 

Amphiura 
filiformis 

invertebrate exp +DDE 2 3.4 

Rouquette 

and 
Thompson 

2007 

Coenagrion 
mercuriale 

insect obs -DDE 3 - 

Roy et al 

2012 

Ursus 

americanus 
mammal obs -DDE 2 3.5 

Sandeson et 

al 2002 

Leptinotarsa 

decemlineata 
insect exp DIE 7 64.0 

Sandeson et 
al 2004 

Leptinotarsa 
decemlineata 

insect exp uDDE(DIE) 4 16.0 

Santoro et al 

2013 

Plegadis 

falcinellus 
bird obs DIE - - 

Scandolara 

et al 2014 
Hirundo rustica bird obs -DDE 38 34.0 

Schulz and 

Leal 2012 

Salminus 

brasiliensis 
fish exp +DDE 2 2.2 

Smith and 

Batzli 2006 

Microtus 

ochrogaster 
mammal exp -DDE 27 25.0 

Stasek et al 
2017 

Agallia 
constricta 

insect exp DIE 2 2.0 

Stauffer et al 

2014 

Leptonychotes 

weddellii 
mammal obs +DDE - 2.7 

Stoen et al 
2006 

Ursus arctos mammal obs -DDE 2 4.5 

Strevens and 

Bonsall 2011 

Callosobruchus 

maculatus 
insect exp +DDE 50 19.0 

Tatara et al 

2011 

Oncorhynchus 

mykiss 
fish exp DIE 3 6.0 

Tripet et al 
2002 

Ceratophyllus 
gallinae 

insect exp -DDE 16 27.5 

Van Allen 

and Bhavsar 

2014 

Tribolium sp. insect exp* +DDE 6 18.0 

Van Allen 

and Bhavsar 

2014 

Tribolium sp. insect exp* DIE 6 18.0 
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Article 

Species 

Scientific Name 

Species 

Type 

Research 

Type 

DDE Form 
(Original 

Form)  

# of 

Densities 

Density 

Range 

Ventura et al 

2017 

Cyrtophora 

citricola 
invertebrate exp -DDE 3 8.0 

Waser et al 

2006 

Dipodomys 

spectabilis 
mammal obs -DDE 2 3.0 

Wauters et al 

2004 
Sciurus vulgaris mammal obs DIE 13 4.0 

Wauters et al 

2004 
Sciurus vulgaris mammal obs +DDE 13 4.0 

Westerberg 
et al 2008 

Protaphorura 
armata 

insect exp -DDE 3 16.7 

Wojan et al 

2015 

Peromyscus 

boylii 
mammal obs -DDE 5 20.0 

Zavorka et al 

2015 
Salmo trutta fish exp DIE 2 - 
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APPENDIX B. SUPPLEMENTARY MATERIAL FOR CHAPTER 3. 

Table B.1. Outputs for spatial point pattern data for distribution 5 hours after release in habitat 

landscapes. Table continues on next page 
Replicate 

(# bugs) 

Density heat map  

at 5 hours 

Ripley’s K 

transformed L(r)-r 
Pair-correlation g(r) 

1 (4) 

   

2 (6) 

   

3 (6) 

   

4 (5) 

   

5 (8) 
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Replicate 

(# bugs) 
Density heat map  

at 5 hours 
Ripley’s K 

transformed L(r)-r 
Pair-correlation g(r) 

6 (7) 

   

7 (3) 

  
 

8 (7) 

   

9 (6) 

   

10 (6) 

   
  r r 
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Table B.2. Outputs for spatial point pattern data for distribution 5 hours after release in habitat 

landscapes. Table continued on next page.  
Replicate 
(# bugs) 

Density heat map 
at 5 hours 

Ripley’s K transformed 
L(r)-r 

Pair-correlation  
g(r) 

1 (6) 

   

2 (7) 

   

3 (6) 

   

4 (5) 
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Replicate 

(# bugs) 
Density heat map  

at 5 hours 
Ripley’s K 

transformed L(r)-r 
Pair-correlation g(r) 

5 (4) 

   

6 (4) 

   
  r r 
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APPENDIX C. SUPPLEMENTARY MATERIAL FOR CHAPTER 3. 

Table C.1. Collection sites for flour beetle species used in range expansion experiments. 
Granary City, State Species found 

Carolina Supply Company Supply company RFB, CFB 

Sauder Mill Grabill, IN RFB, CFB 

Monroe Grain & Supply Monroe, IN RFB 
Atlas Feed Mills Breaux Bridge, LA RFB 

Summer Farms Franklin, KY RFB, CFB 

Peppers Hardin County Milling Elizabethtown, KY RFB, CFB 
Petrus Granary Alexandria, LA RFB 

Milan Center Feed and Grain New Haven, IN RFB, CFB 

Miller Feeds Goshen, IN CFB 

 

 

Table C.2. Linear regression and quadratic regression results for density-emigration relationships 

of the dispersal lines. AICc value comparing the two regressions is provided for comparisons 

that had differing R2 values. (T=control, D=dispersal, C=competition, F=fecundity, L=selection 

for low ability, H=selection for high ability). DIE under density-emigration relationship 

represents density-independent.  
 Line Linear regression  Quadratic regression   

 
 F DF R2 P 

 

F DF R2 P 

Linea

r 

AICc 

Quadratic 

AICc 

R
ed

 f
lo

u
r 

b
ee

tl
e 

T 0.01 1, 18 0.001 0.93  0.10 2, 17 0.12 0.90   

DL 2.6 1, 18 0.13 0.12  1.89 2, 17 0.18 0.18   

DH 0.01 1, 18 0.001 0.91  0.03 2, 17 0.01 0.97   

DLCL 0.18 1, 18 0.01 0.68  0.15 2, 17 0.02 0.86   

DHCL 0 1, 18 >0.001 0.99  0.29 2, 17 0.03 0.75   

DLCH 4.13 1, 18 0.19 0.06  1.96 2, 17 0.19 0.17   

DHCH 0.66 1, 18 0.04 0.43  0.45 2, 17 0.05 0.65   

CL 11.99 1, 18 0.37 0.003  10.3 2, 17 0.55 0.001 0.75 9.31 
CH 3.26 1, 18 0.15 0.09  2.35 2, 17 0.22 0.13   

FL 1.65 1, 18 0.08 0.22  0.88 2, 17 0.09 0.88   

FH 23.92 1, 18 0.57 0.001  14.6 2, 17 0.63 0.001 -4.52 7.79 

C
o
n
fu

se
d
 f

lo
u
r 

b
ee

tl
e 

T 0.12 1, 18 0.01 0.73  0.08 2, 17 0.01 0.92   

DL 3.99 1, 18 0.18 0.06  1.99 2, 17 0.19 0.17   

DH 1.87 1, 18 0.09 0.19  1.23 2, 17 0.13 0.32   

DLCL 0.26 1, 18 0.01 0.61  0.43 2, 17 0.05 0.66   

DHCL 17.02 1, 18 0.49 0.001  10.88 2, 17 0.56 0.001 -12.1 -2.35 

DLCH 0.16 1, 18 0.01 0.7  0.54 2, 17 0.07 0.54   

DHCH 5.65 1, 18 0.24 0.03  2.8 2, 17 0.25 0.09 -3.72 -0.5 

CL 14.63 1, 18 0.45 0.001  8.08 2, 17 0.49 0.003 -11.3 -10.58 

CH 0.06 1, 18 0.003 0.81  0.42 2, 17 0.05 0.67   

FL 1.16 1, 18 0.06 0.29  0.61 2, 17 0.07 0.55   

FH 0.13 1, 18 0.01 0.72  0.11 2, 17 0.01 0.89   
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Figure C.1. Linear regression for each selection line and both species. (C=control, D=dispersal, C=competition, F=fecundity, 

LA=selection for low ability, HA=selection for high ability). DIE under density-emigration relationship represents density-

independent.  
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